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Executive Summary 

Development Standards & Practices Used 
● Documentation According to Class Quality 
● Life Cycle Processes - Risk Management 
● Software Reliability Standards 
● Guide for Taxonomy for Intelligent Process Automation Product Features and 

Functionality 

Summary of Requirements 
● Create algorithm that identifies cracking, longitudinal cracking, and potholes 
● Evaluate severity level of cracking in accordance with LTPP distress manual 
● Data collection done by smartphone 
● Severity levels defined for 3 different types of pavements:  

○ Asphalt concrete surface 
○ Jointed portland cement surface 
○ Continuously reinforced concrete surfaces. 

Applicable Courses from Iowa State University Curriculum  
● CprE 388 - Embedded Systems II: Mobile Platforms 
● Com S 309 - Software Development Practices 
● Com S 311 - Algorithm Analysis & Design 
● Com S 319 - Construction of User Interfaces 
● Com S 363 - Database Management 

New Skills Acquired Not Taught in Courses 
● Machine Learning 

○ Setting up/using TensorFlow 
○ Labeling data sets 
○ Training algorithms 

● Servers 
○ Creation 
○ Management 
○ Interactions with other platforms 
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1. Introduction 

1.1 A​CKNOWLEDGEMENT 
We would like to acknowledge our client, Bo Yang.  Bo has been working with us from 
many angles to progress on this project, and will likely be a large contributor to our 
success.  The basis for this project is an unfamiliar topic, but Bo has been guiding us in 
how to properly classify cracks based on the LTPP manual.  In addition to the help with 
LTPP, he has forwarded research to us that is relevant to the project.  He has also 
expressed that he will help us in the event that we need financial assistance or additional 
hardware. 
 

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT 
1.2.1 Problem Statement 

The classification of cracks and potholes found in roads and their severity 
currently requires manual measurement of the affected area.  This 
measurement requires researchers to leave their vehicles and enter the 
roadway, which is often dangerous.  Measurements are also often time 
consuming to obtain. 

1.2.2 Proposed Solution 

The purpose of this project is to develop an Android application that removes 
the need for a researcher to leave their vehicle when classifying 
cracks/potholes based on the type.  The project is driven by the need described 
above. This measurement is a vital part of determining where to focus 
research and gather additional data.  The current process is both slow and 
dangerous; researchers are often standing alongside lanes of high speed 
traffic. 

Our planned solution is a mobile device running a mobile application running 
a trained machine learning algorithm which will be mounted on the dashboard 
or windshield of a vehicle. The app will inference whether the stretch of road 
ahead of the device contains a pothole or crack.  From there, the mobile 
device will snap an image and send it to a remote server along with the 
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location of the image.  From there, the image will be accessible along with 
location on a web-based portal. 

1.3 ​OPERATIONAL​ E​NVIRONMENT 
The general operational environment for this project will be on a mobile device mounted 
on either the dashboard or windshield of a car using a 3rd party mounting device. 
Although the device will not withstand any extreme weather conditions, the user will not 
be required to interact with it while driving.  It must be capable of running automatically 
after minimal user set-up prior to driving, and operate  in a non-distracting manner to the 
driver until manually terminated.  
 

1.4 F​UNCTIONAL​ R​EQUIREMENTS 

1.4.1 Android Application 

1.4.1.1 The application will use a trained model to detect longitudinal cracking, 
transverse cracking, and potholes found in roads. 

1.4.1.2 If a crack/pothole is detected the app will save an image of the area where 
the detection occurred to the mobile device. 

1.4.1.3 If a crack/pothole is detected, the app will save the location data, date, and 
time of when/where the detection occurred. 

1.4.1.4 If the user is connected to the internet, the application will submit 
collected images and location data to the server to be stored in the 
database. 

1.4.1.5 If the user is not connected to the internet, the application will maintain a 
list of stored images and relevant data that have not been submitted to the 
server. 

1.4.2 API 

1.4.2.1 When the server is shut down the API shall return appropriate error codes 
detailing the loss of the server. 

1.4.3 User Interface 

1.4.3.1 The user can press a button to make the app start scanning the road for 
cracks/potholes.  After the button is pressed the app requires no further 
interaction from the user to detect cracks/potholes. 
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1.4.3.2 The user can press a button to stop the scanning process. 

1.4.3.3 The app will display bounding boxes around detected cracks/potholes to 
provide a visual feedback of detections. 

1.4.3.4 Given the API is down, the user interface shall remain functional. 

 

1.5 N​ON​-​FUNCTIONAL​ R​EQUIREMENTS 
1.5.1 Android Application 

1.5.1.1 The detection shall be able to detect cracks/potholes on multiple road 
types (composite/asphalt/etc.) 

1.5.1.2 The app shall be capable of detecting cracks/potholes at various speeds  

1.5.1.3 Detections made by the app shall comply with the LTPP distress manual. 

1.5.2 API 

1.5.2.1 The API shall have documentation for each endpoint. 

1.5.3 User Interface 

1.5.3.1 If the classification server is not available, the user interface shall display 
that there was a loss of communication to the user. 

1.5.3.2 If an error occurred while sending or receiving images/videos from the 
server, the user interface shall display a user-friendly error message. 

1.5.3.3 The user shall be capable of viewing past detections along with their data. 

 

1.6 I​NTENDED​ U​SERS​ ​AND​ U​SES 
The intended users for the deliverables from this project are researchers.  Researchers in 
this area require measurements of cracks and potholes in the road, but gathering those 
measurements are both time consuming and dangerous.  By using this project, researchers 
will be able to gather images and classify cracks/potholes much quicker than they could 
manually.  Researchers will also be able to complete this task from their vehicle, which 
will be safer than roadside.  They prioritize accuracy and availability of data, so we will 
focus on those two ideas when implementing our project. 
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1.7 A​SSUMPTIONS​ ​AND​ L​IMITATIONS 
1.7.1 Assumptions 

1.7.1.1 The mobile device will be mounted using a third party mounting device on 
either the dashboard or windshield 

1.7.1.2 The application will be started prior to the user driving, requiring no 
interference until the user has finished evaluating their target area 

1.7.1.3 The product will not be used outside of the United States 

1.7.1.4 There will be 10 or fewer concurrent users sending/receiving data from the 
server at a given time 

1.7.1.4.1 Primary focus as defined by the client is on creating a functioning 
and accurate algorithm and less on supporting multiple users 

1.7.1.5 Data obtained from the application and any processing of the data will be 
stored in a centralized database 

1.7.1.5.1 We don’t currently foresee different organizations using this 
application simultaneously 

1.7.2 Limitations 

1.7.2.1 The application should be run on commercially available mobile devices 
without the use of additional hardware (outside of the mounting device) 

1.7.2.2 The application should be simple to use, requiring no prior knowledge of 
machine learning, LTPP crack classification, or any other prior knowledge 
to operate 

1.7.2.3 The classifications will be categorized using criteria from the LTPP 
distress manual 

 

1.8 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES 

1.8.1 Android Application 

The Android application shall be free and available through a downloadable 
APK.  It shall require no additional downloads or modifications to the 
Android device to be operational.  It will operate exclusively with the 
delivered server and database using an API designed for this project.  This 
application will be capable of using a trained model to detect cracks/potholes 
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found in roads and displaying information pertaining to the detection for the 
user. 

1.8.2 API 

There will be an API that can be used to communicate with the server to 
create, read, update, delete, and query data stored on the database. 

1.8.3 Database 

The database will be made available in a condition that requires no additional 
actions from the client to operate.  Instructions for how to remove data or 
manually add data to the database will be included in project documentation. 

1.8.4 Server 

The server will be available in a condition that requires little to no additional 
actions from the client to operate.  Actions such as restarting or terminating 
the server will be simple to execute.  Instructions for how to restart the server 
in the event of an issue and a list of error code definitions will be included in 
project documentation. 

1.8.5 Trained Detection Model 

A trained model will be included in the Android application for the detection 
of cracks/potholes.  Detectable crack types will include transverse cracking, 
longitudinal cracking, and potholes as described in the LTPP manual. 

1.8.6 Documentation 

Documentation for the process of using each component and making general 
expansionary modifications will be made available.  This will include, but is 
not limited to, restarting each component, wiping each component of data and 
restarting, performing general maintenance, and error handling. 
Documentation for how to expand upon the types of classifiable cracks may 
also be included. 

 

2. Specifications and Analysis 

2.1 P​ROPOSED​ D​ESIGN 
We’ve identified three loose approaches to this project; an all-in-one mobile application, 
a mobile application that sends data to a server for complete detection/classification with 
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a web portal, and detecting using the Android application while making data available in 
a web portal.  Each approach has pros and cons.  The all-in-one application would be the 
simplest and least data-intensive option for the end user, but may function too slowly to 
detect cracks/potholes at higher speeds.  On the other hand, doing all of the detection 
server side would be extremely accurate but require sending large amounts of video or 
images to the server, and thus be extremely data intensive.  Lastly, a blended approach 
would allow us to detect cracks/potholes at a relatively quick pace while creating a more 
user-friendly portal for viewing collected data.  While we recognize the value in the other 
two approaches, we settled on a blended application.  Our current proposed design is as 
follows: 
 

2.1.1 Mobile Application 

2.1.1.1 Runs a trained machine learning model for detecting potholes/cracks using 
TensorFlow Lite 

2.1.1.2 Captures images when a potential crack or pothole is detected 

2.1.1.3 Sends the image, date, time, and location data to the server either as 
detections are made or in a batch at user request 

2.1.2 Server 

2.1.2.1 Receives the image and relevant data from the mobile application 

2.1.2.2 Stores the original image and relevant data in a database 

2.1.2.3 Makes the image and relevant data accessible to the web portal 

2.1.3 Database 

2.1.3.1 Stores the captured image, location, date, time, and a unique identifier for 
each detected crack/pothole 

2.1.4 Web-based User Interface 

2.1.4.1 Displays collected images, location, date, and time for each detection 
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Figure 1​: Activity Diagram 

 

 

Figure 2:​ Deployment Diagram 
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2.2 D​ESIGN​ A​NALYSIS 
With this design approach we were able to combine the strengths of the other two 
options.  We believe that doing detection in-app will cut down on the amount of required 
data.  By detecting cracks/potholes as we go we can keep only relevant data, and 
therefore less storage is required both on the device and in the database. 
It is also worth noting, however, that this design came with some concerns.  While we are 
satisfied with how a mobile device makes inferences, making detections server-side on 
videos would allow for more accuracy at high speeds.  With a Pixel 4 XL the device was 
able to make detections at about 7-10ms per inference.  Limitations in mobile hardware 
with both the camera quality, camera speed, and processing power may inhibit 
performance on some devices. 
Another large design choice we have made was to develop the application for Android 
devices.  Our group has significantly more experience with creating Android applications 
and each member owns an Android device.  Helpful frameworks, like TensorFlow Lite, 
have been created by Google and also have greater support and documentation for 
Android. 
Initially, we were apprehensive of the blended approach being attainable, but as we 
continued to research and implement prototypes it increasingly proved to be a valid 
option.  We found an offshoot of TensorFlow named TensorFlow Lite that is optimized 
for mobile.  After working through some examples of TensorFlowLite YOLO detection, 
we felt with some adjustments the application would be able to inference quickly. 
 

2.3 D​EVELOPMENT​ P​ROCESS 
We followed an Agile approach to this project.  Our sprints were roughly two weeks in 
length and included biweekly demos with our client. Tasks were organized on Trello with 
task designation occuring during weekly team meetings.  We used GitLab for 
organization and Google Drive for organization and creation of documentation. 
 

2.4 E​NGINEERING​ S​TANDARDS​ & D​ESIGN​ P​RACTICES 
We used a handful of design practices to ensure maintainability and help foster a 
smoother development process. 
2.4.1 Standardized Tooling and Technologies 
The tools and technologies used in this project were evaluated and chosen based on both 
their effectiveness, and the ease of use and implementation by team members.  By 
choosing a standardized set of tools and technologies that all members were comfortable 
with, we were able to aid each other much more quickly when issues arose. 
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2.4.2 Process Standards 
Early on in the planning stage we agreed upon a process which we could all follow when 
developing this project.  Tasks were divided into cards on Trello, which were assigned in 
meetings, completed by members, discussed in following meetings, and reviewed before 
being merged with completed tasks. 
2.4.3 Standardized Coding Style 
To aid readability and maintainability of this project, our group created a document that 
outlined a standardized coding style.  This document includes information such as 
naming conventions, commenting conventions, and indentation. 
2.4.4 Code Quality Control 
Before code is merged to the overall project, it is reviewed by at least one other group 
member for adherence to the standardized coding style. 
 

2.5 D​ESIGN​ P​LAN 

The mobile application will be designed for Android targeting API level 27 or later to 
allow the use of the existing Neural Networks API designed by Google.  It will utilize 
TensorFlow Lite to make inferences using a trained model.  The model will be trained to 
detect transverse cracks, longitudinal cracks, and potholes.  Detections will be made on 
the device using the model and back-facing camera, and collected images will be stored 
on the device until the device is connected to the internet.  If internet connectivity is 
available, the device will send images to the server that have not been sent already using 
the Volley library. 

The server was with Node.js and utilized the API to store data in a MySQL database.  If 
the API or server were to shut down for any reason, the data will remain uncorrupted and 
the Android and web interfaces will display appropriate error messages.  Following the 
reception of images, the server will store the incoming data in the database. 

The web interface will allow users to view and retrieve existing data from the database, 
including images, location, date, and time in an easy to read format.  From the web 
portal, if the user disagrees with the classification of a crack/pothole, they can either 
manually delete the detection or manually change the type of the crack/pothole. 
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3. Statement of Work 

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE 
Previous work demonstrates advances in object detection algorithms have lead to 
research leveraging deep learning for road damage.  From the literature there were three 
popular methods for realizing this task; the first leverages a simple convolutional neural 
network (CNN) architecture which is used for inference to generate simple bounding 
boxes during run time.  The second leverages more complex CNN architectures which 
semantically segment the objects from the background.  Finally, the last provides an 
alternative approach to crack detection using a conditional Wasserstein Generative 
Adversarial Network (WcGAN).  For our project we are specifically trying to detect 
potholes, longitudinal cracks, and transverse cracks in concrete.  Furthermore, our task 
involves detecting the severity level of each crack, as well as using a smartphone for data 
collection.  The combination of these three requirements has yet to be realized.  

First, from the article titled “Road Damage Detection Using Deep Neural Networks with 
Images Captured Through a Smartphone”[1], the authors created their own custom 
dataset by mounting a smartphone to the dashboard of a car that takes photos every 
second.  From this dataset they collected over 9,000 images in which they used alongside 
the SSD Mobilenet architecture to train weights and biases for object detection.   SSD is 
an object detection framework which uses a single feed-forward CNN to directly predict 
classes and anchor offsets without requiring a second stage per-proposal classification. 
The authors implement SSD using both Mobilenet and Inception V2 and conclude that 
implementing SSD using mobilenet on a smartphone is the faster option of the two. 

Second, the article titled “A Deep Learning Approach for Road Damage Detection from 
Smartphone Images”[2] uses the same dataset to evaluate road damage, however instead 
of using the SSD architecture they use YOLO.  This article YOLO, however their results 
are not tested on a mobile device.  Our research has determined that in order to get this 
working in a smartphone, a lighter weight version of YOLO is required to be used to 
derive the weights that will map the input data to our desired bounding box detection 
outputs.  

Next, in the article titled “​Road Damage Detection and Classification with Faster 
R-CNN”[3], ​ they use pixel-level segmentation to annotate and identify cracks in the 
pavement.  While this approach is more accurate, it is more computationally expensive. 
Finally authors in the article titled “​Road Damage Detection and Classification with 
Faster R-CNN” leveraged ​an approach using  a conditional Wasserstein generative 
adversarial network (WcGAN) is used.  Using this technique the authors were able to 
generate synthetic training data which would allow a deep learning practitioner to train an 
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object detection model with the generated images to improve the detectors accuracy, 
resulting in a highly accurate object detector.  

For our project we are specifically planning to detect potholes, longitudinal cracks, and 
transverse cracks in concrete. Furthermore, our task involves detecting the severity level 
of each crack, as well as using a smartphone for data collection. The combination of these 
three requirements has yet to be realized. 

 

3.2 T​ECHNOLOGY​ C​ONSIDERATIONS 
Implementing a convolutional neural network (CNN) to train your own custom object 
detector is a highly complex task we will achieve through a combination of the right 
operating system, hardware, and software.  We have strategically chosen a technology 
stack which will fulfill the requirements of the project and be easy to pick up for people 
new to machine learning with the help of our extensive documentation. 

Linux Ubuntu 18.04 is used to build our development environment where we will 
manage all of our third party libraries used for training the weights and biases of our 
object detectors.  Linux Ubuntu 18.04 has an active community of support for deep 
learning practitioners and is great for establishing a development environment for deep 
learning.  

A GeForce 930MX Graphics Processing Unit (2GB) will be used for intensive processing 
during training.  For our initial prototype we fed over 9,000 images into a custom 
developed yolov2-tiny object detection architecture that we used to train 3 classes that 
detect transverse cracks, longitudinal cracks, and potholes respectively.  With this many 
images and multiple classes, the task of training weights for inference requires the matrix 
multiplication of millions of parameters stored as n-dimensional matrices.  GPU’s allow 
thousands of threads to be run concurrently in contrast to one or two threads per CPU 
core which exponentially reduces training time.  

Our prototype implementation of our object detector was specifically trained and ran 
using  CUDA, OpenCV, and Tensorflow.  CUDA enables GPU acceleration that 
facilitates the processing-intensive matrix multiplication operations involved in training a 
custom object detector.   OpenCV performs inference and generates the bounding boxes 
which display the predicted object and confidence level of this prediction. 
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3.3 T​ASK​ D​ECOMPOSITION 
3.3.1. Gather Requirements 

3.3.1.1 Gather functional requirements 

3.3.1.2 Gather non-functional requirements 

3.3.2. Gather Domain Knowledge 

3.3.2.1 Gather information on problem context 

3.3.2.2 Gather information on data collection mechanism 

3.3.3. Implement a Custom Object Detector 

3.3.3.1 Choose multiple CNN architectures to train and to test 

3.3.3.2 Setup the development environment to train and run inference 

3.3.3.3 Extensively document installation steps 

3.3.3.4 Using multiple YOLO architectures to train road damage detectors 

3.3.3.5 Run tests on custom object detectors 

3.3.4. Create a Custom Dataset for Object Detection 

3.3.4.1 Identify pre-existing datasets for road damage detection 

3.3.4.2 Integrate pre-existing datasets  

3.3.5. Scale a Custom Object Detector to a Mobile Device 

3.3.5.1 Collect data for custom dataset for road crack detection 

3.3.5.2 Create a custom dataset  

3.3.5.3 Install Tensorflow 

3.3.5.4 Extensively document tensorflow installation instructions 

3.3.6. Test the Object Detection System’s Ability to Generalize 

3.3.6.1 Collect data for custom dataset for road crack detection 

3.3.6.2 Create a custom dataset  
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3.3.6.3 Install Tensorflow 

3.3.6.4 Extensively document tensorflow installation instructions 

3.3.6. Implement UX / UI Design 

3.3.6.1 Design user friendly AI for Android application. 

3.3.6.2 Parse GPS coordinates from image metadata 

3.3.6.3 Create web based UI for severity level recognition 

3.3.7. System Level Testing 

3.3.7.1 Test and measure the speed and accuracy of object detection 

3.3.7.2 Test the integration of Android, the server, and web-based UI 

 

3.4 P​OSSIBLE​ R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT 
Risk Occurrence Scale 

1. Improbable: unlikely to happen - frequency:​ 0 
2. Remote: unlikely but possible - frequency: ​0.01  
3. Occasional: could happen sometimes - frequency: ​0.05 - 0.1 
4. Probable: is expected to happen - frequency: ​0.1-0.3 
5. Frequent: will occur several times in the year: ​1 

 
Risk Impact Scale 

1. Negligible:  
2. Minor: late ​1 week ​with ​no penalty 
3. Serious: late less than ​2 weeks​ with ​10% penalty 
4. Critical: late less than​ 3 weeks ​with ​20% penalty 
5. Catastrophic: late more than ​4 weeks​ with ​30% penalty 
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Risk Exposure Matrix 
 

 
 

  
 
 
 
 
 
 
 
 

 
 
 

Table 1.​ Risk Exposure matrix 
 

Risk Evaluation 
 

Risk Occurrence Impact  Exposure 

Hard drive fails - lose training software  0.01 2 Very Low 
 

Table 2.​ Risk Evaluation 
 

 
Risk Breakdown 

Title:​ Hard drive fails - lose training software  
Response:​ Risk Reduction  
Justification: ​Overall our project plan is very well thought out and we are confident that 
we’ll be able to achieve our goals, the only risk that our team could think of would be if 
our hardware where all of the training software was installed failed at some point that this 
would set us back about a week or so in installation times.  For this reason we 
documented all of the steps for installing Cuda, Tensorflow, and OpenCV. 
Mitigation Action: ​ Documentation on installation steps of all open source software 
compiled from sources has been created. 
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3.5 P​ROJECT​ P​ROPOSED​ M​ILESTONES​ ​AND​ E​VALUATION​ C​RITERIA 
Milestone 1: Preliminary Phase is Complete 

● Functional requirements gathered. 
● Nonfunctional requirements gathered. 
● Cuda 9.0 + cudnn v7.3.0 and Darknet installed 
● OpenCV Version 4.0.0 installed. 
● Tensorflow r1.12 installed. 
● Installation steps documented for all 3rd party software. 

Milestone 2: System Design is Complete 

● All parts designed for networking. 
● All parts for user interface are designed. 
● Create database diagram. 
● Create high level systems level diagram. 

Milestone 3: System is Constructed 

● Object detection integrated into Android smartphone app that detects initial cracks 
and potholes. 

● Web UI allows clients to view the results of server-side object detection. 
● All parts of the system are integrated. 

Milestone 4: System Testing is Complete 

● Data collection has been tested using smartphone mounted in car. 
● Testing has been completed to verify an image can be sent to the server. 
● Testing has been completed to verify the processed image can be viewed on the 

Web UI. 

 

 

3.6 P​ROJECT​ T​RACKING​ P​ROCEDURES 
Our group is using a Trello board to track work that is in progress, on the backlog, and 
completed.  In addition to the trello board we are using GitLab issues.  We provide our 
team with a standard template to fill out when reporting issues to the repository that 
enables easy communication and collaboration in resolving these issues. 
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Figure 3.​ Trello Board 
 
 
 
 

 

 

 

 

 

 

 

 
 
 

Figure 4.​ GitLab Issue Tracker 
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3.7 E​XPECTED​ R​ESULTS​ ​AND​ V​ALIDATION 
The desired outcome of our work is to create a 2 valid training models.  Our first model 
will be intended for use directly on smartphones, and our second model will be a more 
heavyweight model which will perform more rigorous crack detection, including multiple 
levels of severity.  Our model should be generalizable, meaning that the weights that we 
generate to perform our crack detection task should work during different times of the 
day and on pavement and cracks in different cities.  Additionally our results from 
validation testing will help us determine if we have reached our goal. 

 

4. Project Timeline, Estimated Resources, and Challenges 

4.1 P​ROJECT​ T​IMELINE 

 

Figure 5.​ Gather Requirements and Gather Domain Knowledge Timeline. 
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Figure 6.​ Implement a Custom Object Detector Timeline. 
 

 

Figure 7.​ Create a Custom Dataset for Object Detection Timeline. 
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Figure 8.​ Scale a Custom Object Detector to a Mobile Device Timeline. 
 

 

Figure 9.​ Test the Object Detection System’s Ability to Generalize Timeline. 
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Figure 10.​ Implement Server Side Object Detection Timeline 
 

 

Figure 11.​ Implement UX / UI Design Timeline. 
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Figure 12.​ System Level Testing Timeline. 
 

 

 

4.2 F​EASIBILITY​ A​SSESSMENT 

The project will be a mobile application for Android smartphones that will automatically 
detect and classify cracks and potholes in the road. The phone will be mounted on the 
dashboard or windshield of the user’s vehicle, with the camera facing down towards the 
road. The application will record and a video with geotags and timestamps recorded when 
a crack/pothole is detected. This information will be sent to a server, where it will 
subsequently be processed through the classification algorithm and returned with a list of 
the cracks/potholes, their location, and their classification. 

We have quite a few foreseen challenges to this project. Since the user is mounting the 
device, there is a lot of different angles that the camera could be facing the road at. We 
must find a way to allow that kind of variation, or give them a strict method of mounting 
the phone. Additionally, since we will also we surveying highways, we need to be able to 
identify cracks at high speeds. Since phones can only record at 60fps, we may have to 
limit the max speed of the user.  

 

4.3 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS 
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Fall Timeline 

 

Week Task Personnel Effort 
Requirements 

Week 7 - 10/10  Cuda 9.0 +cudnn v7.3.0 
and Darknet installed, 
update any documentation 
that needs to be created or 
updated regarding this 
process.  

5-6 hrs 

Week 8 - 10/17 OpenCV Version 4.0.0 
installed, update any 
documentation for this 
install, should now be able 
to run and test training a 
Darknet model, identify 
key datasets for training 

3 hrs 

Week 9 - 10/24 Tensorflow r1.12 (larger 
build, may have more 
errors so extending this 
build and documentation 
step to span 2 weeks), 
choose criteria for labeling 
and begin labeling data for 
training 

5 hrs 

Week 10 - 10/31 Tensorflow r1.12, begin 
training data, training 
experiments: follow 
training steps from ​this 
document​.  Also test the 
accuracy difference in 
unprocessed and 
preprocessed datasets.  Try 

7 hrs 
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preprocessing the data in 
multiple distinct ways.  

Week 11 - 11/7  Convert Tensorflow model 
to Tensorflow Lite model 
(challenging task, may 
need to switch to a 
different model if this has 
not been completed by this 
date) 

10 hrs 

Week 12 - 11/8  Integrate our converted 
models into Android app 
and begin testing our 
models to see which ones 
have the highest accuracy.  

10 hrs 

Week 13 - 11/15 Start training new models 
based on the prior noted 
tweaks 

4 hrs 

Week 14 - 11/21  Test these models 2 hrs 

Week 15 -  11/28 Wrap up documentation 
and results, come up with 
plan for next semester 

3 hrs 

Week 16 - 12/1-1/13 Break None 

Table 3.​ Fall Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is to 
be done in the week leading up to each Thursday. The personal effort requirements are also listed alongside 

each week’s work. 
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Spring Timeline 

Week 17 - 1/16 Begin developing frontend 
UI in android studio. 
Configure server and begin 
backend development. 

10 hrs 

Week 18 - 1/23 Begin incorporating 
detection into the frontend 
and classification into the 
backend. 

7 hrs 

Week 19, 20, 21 - 
1/30-2/13 

Begin testing algorithms on 
real world roads and 
making appropriate 
adjustments. 

4 hrs 

Week 22 - 2/20 Finish draft of user screens.  12 hrs 

Week 23 - 2/27  Begin creating interaction 
between frontend and 
backend. 

10 hrs 

Week 24 - 3/5 Finalize interaction 
between frontend and 
backend.  

12 hrs  

Week 25, 26, 27, 28 

3/12-4/2 

Test application and make 
appropriate adjustments. 

40 hrs 

Week 29 - 4/9  ​Test out final draft of 
application. 

6 hrs 

Week 30 - 4/16  Make any final 
adjustments. 

10 hrs 

SDMAY​20-18     28 
 



 

Week 31 - 4/23 Submit project and reflect 
on feedback. 

2 hrs 

Table 4.​ Spring Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is 
to be done in the week leading up to each Thursday. The personal effort requirements are also listed 

alongside each week’s work. 
 

4.4 O​THER​ R​ESOURCE​ R​EQUIREMENTS 
We will need YOLO, cuda, and Tensorflow lite for software requirements. We will also 
need a smartphone, a computer to host a server on, and a dashboard mount, which will be 
provided by our advisor. 

 

4.5 F​INANCIAL​ R​EQUIREMENTS 
We will require a laptop to use as our own project server.  This way the project can be 
accessed by our client and advisor after we graduate. 

 

 

 

5. Testing and Implementation 

5.1 I​NTERFACE​ S​PECIFICATIONS 
This project’s outcome consists of implementing an algorithm to be used on a mobile 
phone mounted in a car. Therefore, the algorithm will run on a phone with a graphical 
interface with minimal user input once the user has initiated the program. i.e the user 
should be able to input all commands before starting the cracks/potholes detection. The 
interface should display a real-time video feed of identified transverse cracking, 
longitudinal cracking, and potholes. Thus, by using real-time data for the testing, we will 
improve the chances of the algorithm to detect issues that may occur on the user’s end. 

5.2 A​LGORITHM​ I​MPLEMENTATION 
For our convolutional neural network architecture we chose SSD Mobilenet.  SSD 
Mobilenet is an optimized version of the SSD architecture.  It contains less filters, and 
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also leverages depth-wise separable convolution, which makes it importantly lightweight 
and able to detect fast on mobile devices while also detecting relatively accurately.  

5.3 A​NDROID​ A​PPLICATION​ I​MPLEMENTATION 
The Android application was created using Android Studio and made to target API 27. 
This application was developed with both Java and Kotlin and utilizes Android’s new 
CameraX library.  To make inferences using the trained model, the app utilizes 
TensorFlow Lite as well as some of the functions provided by Google’s Neural Networks 
API.  Once detections are made, images and relevant information are saved to the device 
or sent to the server using HTTP requests aided by the Volley library.  Upon opening the 
app, the user is prompted to log in using a simple login/account creation page.  Once 
logged in, user interaction is simple and limited to a start/stop button which either starts 
or stops inferencing using the back-facing camera. 

5.4 B​ACKEND​ I​MPLEMENTATION 
For the backend of this project we procured a Ubuntu VM from SSG in Coover.  On this 
VM we operate our Node.js server which has routes for all HTTP requests for the project 
as well as the MySQL database.  HTTP requests are sent to the Node.js server, which 
then executes functions to format and store/retrieve the data within the database.  Images 
sent to the server are stored on the server filesystem, with references to the image name 
within the database. 

5.5 W​EB​ P​ORTAL​ I​MPLEMENTATION 
The web portal was implemented using React.js, JavaScript, HTML, and CSS with an 
account creation page, login page, and dashboard.  Both the account creation and login 
pages are simple, standard, and intuitive user interfaces.  The dashboard consists of two 
vertical panes.  Left consists of a list of list items that include unique identifiers for 
cracks/potholes as well as detected types.  The list is sortable based on type.  When a 
crack is selected from the left pane its details are displayed within the right pane.  Details 
included are location, date, time, type, image of the crack, and a Google Maps pin of the 
location on a map.  The map and pin are included using the Google Maps API and GPS 
location sent from the Android application. 

 

5.6 F​UNCTIONAL​ T​ESTING 
To verify that the final product meets the quality expectations and requirements 
specifications, an actual driving test will be performed to locate defects in the algorithm. 
During this test, we will drive (in normal weather conditions) in certain areas and collect 
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enough data which we will in turn use to assess the actual outcome compare to what is 
expected. Nevertheless, this  testing mechanism does not guarantee that all defects will be 
identified. Thus, with the outcome, we will decide whether to improve our algorithm and 
fix the issues (if severe) or whether to consider that the algorithm minimum requirements 
have been met. 

To achieve functional testing, we will identify functions that the algorithm is expected to 
perform. Then create input ( i.e. feeding images/videos) data based on the function’s 
specifications and determine the output based on these specifications. Finally, we will 
execute test cases and compare the actual and expected outputs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 13. ​Ground truth label before training                                  ​Figure 14. ​Bounding box generated 
           yolo v2 weights                                                           from inference. 

 
 
 
 
5.7 N​ON​-F​UNCTIONAL​ T​ESTING 

While functional testing will test the functionality of the algorithm, non-functional testing 
is also very important and should be taken into consideration right from the inception of 
the algorithm. Hence, the user should be able to mount the mobile phone in the car prior 
to its usage and shouldn't need to have prior knowledge about how to use the application.  
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5.8 P​ROCESS 

As indicated in section 2, there are three major processes to select from: a mobile 
application with all the detection features included;  a mobile application that transfer all 
the data collected to a server which does all processing; or a spit of detection features 
between the mobile app and the server. To be more efficient, we used a combination of 
those methods. The following illustrates how we tested those processes.  

To test the mobile application, we looked at the images that were sent on the server by 
the app and verified that each of them depicts the types of cracks/potholes we were 
expected. In addition, we made sure that for each of those images, the location 
coordinates also match the values in our database. A similar approach was done to test 
the Node.js server, except the images from the mobile application are not processed prior 
to their transfer to the server. i.e, the server does all the processing. Finally, for the SQL 
Database, we test the output by using a large dataset of stored images, locations, and 
severity classifications.  

 

5.9 R​ESULTS 
So far, we have a training environment setup and configured with CUDA and cuDNN 
module. We have tested multiple machine learning frameworks such as Keras and 
TensorFlow. By using tensorflow to start the training of some models for object 
detection, we have successfully trained a custom model, identified a sample dataset to 
test the framework on, and have a good understanding on how to label images in 
labelImg.  In addition we have a custom configuration of OpenCV to build with CUDA 
and cuDNN modules among other custom modules.  Finally, we have visualized results 
of the model using OpenCV 4 which drew the bounding boxes around the object 
detection predictions. 
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Figure 15. ​Object detection performs system                          ​Figure 16.  ​Object detection system detects  
   transverse and longitudinal crack detection               potholes.

 

 

6. Closing Material 

6.1 C​ONCLUSION 

To sum up, the goal of this project was to develop an algorithm that can analyze the 
images/videos taken by a phone camera and identify the types and severity levels of 
cracks found. The best plan of action to achieve this goal was to automate this analysis 
using feeds recorded by a smartphone mounted on the windshield of a car; this technique 
coupled with GPS coordinates proved to help engineers locate the cracking position and 
develop a pavement maintenance/rehabilitation plan accordingly. 
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6.3 A​PPENDICES 
APPENDIX A: OPERATION MANUAL 

 

 

APPENDIX B: ALTERNATIVE DESIGNS 
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Figure 17​: Diagram of Crack Detection System 

 

 

 

Figure 18​: Deep Learning Framework on Convolutional Neural Network 
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Figure 19​: Crack Classification Based on Image Processing and Machine Learning 

 

APPENDIX C: OTHER CONSIDERATIONS 

Image-based techniques are fundamental in pavement crack detection. Various 
approaches have been proposed to detect cracks. Below is a brief overview of other 
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methods that should be taken in consideration. These methods can be combined to 
improve the overall detection of cracks.  

Huang and Xu [9] describe in their work how they implement a complex system to 
capture images of the pavement to detect cracks. Once the image is captured, three main 
steps are performed: divide the image in grid cells of 8×8 pixels and classify each cell 
into a non-crack or crack cell. After that, crack cells are verified, comparing each one to 
their neighbors and, finally, crack clusters are connected to form the actual final cracks. 
Based on the starting and ending coordinates, the crack is finally classified as 
longitudinal or transverse. 

Li et al. [10] take advantage of neural networks to detect cracks. Before the learning and 
classification process, a preprocessing step is performed. First, the image background is 
corrected, by making it more uniform. Then, in order to transform the image into a 
smoother one, a Gaussian smoothing is used. Finally, a histogram transformation is 
applied to highlight the crack. After the preprocessing, several techniques are used to 
split the image into smaller subimages. The background is removed and each sub-image 
is classified depending on whether it contains a crack or not. Only the images that contain 
cracks are selected and two different neural networks are used to classify these images. 
The first one classifies whether the crack has linear (either transverse or longitudinal) or 
alligator form. After that, the second one classifies between longitudinal and transverse 
cracks. 

Once the images are captured, Cubero et al. [8] describe how several processes are 
applied in order to extract the main characteristics for emphasizing the cracks. After 
image preprocessing, a decision tree heuristic algorithm is applied to finally classify the 
image. This process produces an average of 88% of success detecting cracks and an 80% 
of success detecting the type of the crack. This method can be implemented in a vehicle 
traveling as fast as 130 kmh or 81 mph. 
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