

SnapCrack
Akira DeMoss - Lead Deep Learning Engineer, Meeting Facilitator

 Maggie Dalton - Lead Software Engineer, Meeting Scribe

Modeste Kenne - IoT Engineer, Test Engineer

Nik Thota - Software Engineer, Report Manager

sdmay20-18

Client: Bo Yang

Adviser: Halil Ceylan

Team email: sdmay20-18@iastate.edu

Team website: ​http://sdmay20-18.sd.ece.iastate.edu/

Revised: 12/8/2019 (Final)

http://sdmay20-18.sd.ece.iastate.edu/

Executive Summary

Development Standards & Practices Used
● Documentation According to Class Quality
● Life Cycle Processes - Risk Management
● Software Reliability Standards
● Guide for Taxonomy for Intelligent Process Automation Product Features and

Functionality

Summary of Requirements
● Create algorithm that identifies cracking, longitudinal cracking, and potholes
● Evaluate severity level of cracking in accordance with LTPP distress manual
● Data collection done by smartphone
● Severity levels defined for 3 different types of pavements:

○ Asphalt concrete surface
○ Jointed portland cement surface
○ Continuously reinforced concrete surfaces.

Applicable Courses from Iowa State University Curriculum
● CprE 388 - Embedded Systems II: Mobile Platforms
● Com S 309 - Software Development Practices
● Com S 311 - Algorithm Analysis & Design
● Com S 319 - Construction of User Interfaces
● Com S 363 - Database Management

New Skills Acquired Not Taught in Courses
● Machine Learning

○ Setting up/using TensorFlow
○ Labeling data sets
○ Training algorithms

● Servers
○ Creation
○ Management
○ Interactions with other platforms

SDMAY​20-18 1

Table of Contents
1. Introduction 5

1.1 ​Acknowledgement 5

1.2 ​Problem and Project Statement 5

1.3 O​perational Environment 6

1.4 ​Functional Requirements 6

1.5 ​Non-functional Requirements 7

1.6 ​Intended Users and Uses 8

1.7 ​Assumptions and Limitations 8

1.8 ​Expected End Product and Deliverables 8

2. Specifications and Analysis 10

2.1 ​Proposed Design 10

2.2 ​Design Analysis 12

2.3 ​Development Process 13

2.4 ​Design Plan 13

3. Statement of Work 14

3.1 Previous Work And Literature 14

3.2 Technology Considerations 15

3.4 Possible Risks And Risk Management 17

3.5 Project Proposed Milestones and Evaluation Criteria 19

3.6 Project Tracking Procedures 20

3.7 Expected Results and Validation 22

4. Project Timeline, Estimated Resources, and Challenges 22

4.1 Project Timeline 22

4.2 Feasibility Assessment 24

4.3 Personnel Effort Requirements 24

4.4 Other Resource Requirements 24

4.5 Financial Requirements 25

SDMAY​20-18 2

5. Testing and Implementation 25

5.1 ​Interface Specifications 25

5.2 ​Hardware and software 25

5.3 ​Functional Testing 25

5.4 ​Non-Functional Testing 26

5.5 ​Process 26

5.6 ​Results 27

6. Closing Material 28

6.1 Conclusion 28

6.2 References 28

6.3 Appendices 28

List of Tables and Figures
Figure 1 - Activity Diagram

Figure 2 - Deployment Diagram

Figure 3 - Trello Board

Figure 4 - GitLab Issue Tracker

Figure 5 - Gather Requirements and Gather Domain Knowledge Timeline.

Figure 6 - Implement a Custom Object Detector Timeline.

Figure 7 - Create a Custom Dataset for Object Detection Timeline.

Figure 8 - Scale a Custom Object Detector to a Mobile Device Timeline.

Figure 9 - Test the Object Detection System’s Ability to Generalize Timeline.

Figure 10 - Implement Server Side Object Detection Timeline

Figure 11 - Implement UX / UI Design Timeline.

Figure 12 - System Level Testing Timeline.

Figure 13 - Ground Truth Label Before Training YOLO v2 Weights

SDMAY​20-18 3

Figure 14 - Bounding Box Generated From Inference

Figure 15 - Algorithm Performing Transverse and Longitudinal Crack Detection

Figure 16 - Object Detection System Detecting Potholes

Figure 17 - Diagram of Crack Detection System

Figure 18: Deep Learning Framework on Convolutional Neural Network

Figure 19: Crack Classification Based on Image Processing and Machine Learning

Table 1 - Risk Exposure Matrix

Table 2 - Risk Evaluation

Table 3 - Fall Timeline

Table 4 - Spring Timeline

SDMAY​20-18 4

1. Introduction

1.1 A​CKNOWLEDGEMENT
We would like to acknowledge our client, Bo Yang. Bo has been working with us from
many angles to progress on this project, and will likely be a large contributor to our
success. The basis for this project is an unfamiliar topic, but Bo has been guiding us in
how to properly classify cracks based on the LTPP manual. In addition to the help with
LTPP, he has forwarded research to us that is relevant to the project. He has also
expressed that he will help us in the event that we need financial assistance or additional
hardware.

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT
1.2.1 Problem Statement

The classification of cracks and potholes found in roads and their severity
currently requires manual measurement of the affected area. This
measurement requires researchers to leave their vehicles and enter the
roadway, which is often dangerous. Measurements are also often time
consuming to obtain.

1.2.2 Proposed Solution

The purpose of this project is to develop an Android application that removes
the need for a researcher to leave their vehicle when classifying
cracks/potholes based on the type. The project is driven by the need described
above. This measurement is a vital part of determining where to focus
research and gather additional data. The current process is both slow and
dangerous; researchers are often standing alongside lanes of high speed
traffic.

Our planned solution is a mobile device running a mobile application running
a trained machine learning algorithm which will be mounted on the dashboard
or windshield of a vehicle. The app will inference whether the stretch of road
ahead of the device contains a pothole or crack. From there, the mobile
device will snap an image and send it to a remote server along with the

SDMAY​20-18 5

location of the image. From there, the image will be accessible along with
location on a web-based portal.

1.3 ​OPERATIONAL​ E​NVIRONMENT
The general operational environment for this project will be on a mobile device mounted
on either the dashboard or windshield of a car using a 3rd party mounting device.
Although the device will not withstand any extreme weather conditions, the user will not
be required to interact with it while driving. It must be capable of running automatically
after minimal user set-up prior to driving, and operate in a non-distracting manner to the
driver until manually terminated.

1.4 F​UNCTIONAL​ R​EQUIREMENTS

1.4.1 Android Application

1.4.1.1 The application will use a trained model to detect longitudinal cracking,
transverse cracking, and potholes found in roads.

1.4.1.2 If a crack/pothole is detected the app will save an image of the area where
the detection occurred to the mobile device.

1.4.1.3 If a crack/pothole is detected, the app will save the location data, date, and
time of when/where the detection occurred.

1.4.1.4 If the user is connected to the internet, the application will submit
collected images and location data to the server to be stored in the
database.

1.4.1.5 If the user is not connected to the internet, the application will maintain a
list of stored images and relevant data that have not been submitted to the
server.

1.4.2 API

1.4.2.1 When the server is shut down the API shall return appropriate error codes
detailing the loss of the server.

1.4.3 User Interface

1.4.3.1 The user can press a button to make the app start scanning the road for
cracks/potholes. After the button is pressed the app requires no further
interaction from the user to detect cracks/potholes.

SDMAY​20-18 6

1.4.3.2 The user can press a button to stop the scanning process.

1.4.3.3 The app will display bounding boxes around detected cracks/potholes to
provide a visual feedback of detections.

1.4.3.4 Given the API is down, the user interface shall remain functional.

1.5 N​ON​-​FUNCTIONAL​ R​EQUIREMENTS
1.5.1 Android Application

1.5.1.1 The detection shall be able to detect cracks/potholes on multiple road
types (composite/asphalt/etc.)

1.5.1.2 The app shall be capable of detecting cracks/potholes at various speeds

1.5.1.3 Detections made by the app shall comply with the LTPP distress manual.

1.5.2 API

1.5.2.1 The API shall have documentation for each endpoint.

1.5.3 User Interface

1.5.3.1 If the classification server is not available, the user interface shall display
that there was a loss of communication to the user.

1.5.3.2 If an error occurred while sending or receiving images/videos from the
server, the user interface shall display a user-friendly error message.

1.5.3.3 The user shall be capable of viewing past detections along with their data.

1.6 I​NTENDED​ U​SERS​ ​AND​ U​SES
The intended users for the deliverables from this project are researchers. Researchers in
this area require measurements of cracks and potholes in the road, but gathering those
measurements are both time consuming and dangerous. By using this project, researchers
will be able to gather images and classify cracks/potholes much quicker than they could
manually. Researchers will also be able to complete this task from their vehicle, which
will be safer than roadside. They prioritize accuracy and availability of data, so we will
focus on those two ideas when implementing our project.

SDMAY​20-18 7

1.7 A​SSUMPTIONS​ ​AND​ L​IMITATIONS
1.7.1 Assumptions

1.7.1.1 The mobile device will be mounted using a third party mounting device on
either the dashboard or windshield

1.7.1.2 The application will be started prior to the user driving, requiring no
interference until the user has finished evaluating their target area

1.7.1.3 The product will not be used outside of the United States

1.7.1.4 There will be 10 or fewer concurrent users sending/receiving data from the
server at a given time

1.7.1.4.1 Primary focus as defined by the client is on creating a functioning
and accurate algorithm and less on supporting multiple users

1.7.1.5 Data obtained from the application and any processing of the data will be
stored in a centralized database

1.7.1.5.1 We don’t currently foresee different organizations using this
application simultaneously

1.7.2 Limitations

1.7.2.1 The application should be run on commercially available mobile devices
without the use of additional hardware (outside of the mounting device)

1.7.2.2 The application should be simple to use, requiring no prior knowledge of
machine learning, LTPP crack classification, or any other prior knowledge
to operate

1.7.2.3 The classifications will be categorized using criteria from the LTPP
distress manual

1.8 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES

1.8.1 Android Application

The Android application shall be free and available through a downloadable
APK. It shall require no additional downloads or modifications to the
Android device to be operational. It will operate exclusively with the
delivered server and database using an API designed for this project. This
application will be capable of using a trained model to detect cracks/potholes

SDMAY​20-18 8

found in roads and displaying information pertaining to the detection for the
user.

1.8.2 API

There will be an API that can be used to communicate with the server to
create, read, update, delete, and query data stored on the database.

1.8.3 Database

The database will be made available in a condition that requires no additional
actions from the client to operate. Instructions for how to remove data or
manually add data to the database will be included in project documentation.

1.8.4 Server

The server will be available in a condition that requires little to no additional
actions from the client to operate. Actions such as restarting or terminating
the server will be simple to execute. Instructions for how to restart the server
in the event of an issue and a list of error code definitions will be included in
project documentation.

1.8.5 Trained Detection Model

A trained model will be included in the Android application for the detection
of cracks/potholes. Detectable crack types will include transverse cracking,
longitudinal cracking, and potholes as described in the LTPP manual.

1.8.6 Documentation

Documentation for the process of using each component and making general
expansionary modifications will be made available. This will include, but is
not limited to, restarting each component, wiping each component of data and
restarting, performing general maintenance, and error handling.
Documentation for how to expand upon the types of classifiable cracks may
also be included.

2. Specifications and Analysis

2.1 P​ROPOSED​ D​ESIGN
We’ve identified three loose approaches to this project; an all-in-one mobile application,
a mobile application that sends data to a server for complete detection/classification with

SDMAY​20-18 9

a web portal, and detecting using the Android application while making data available in
a web portal. Each approach has pros and cons. The all-in-one application would be the
simplest and least data-intensive option for the end user, but may function too slowly to
detect cracks/potholes at higher speeds. On the other hand, doing all of the detection
server side would be extremely accurate but require sending large amounts of video or
images to the server, and thus be extremely data intensive. Lastly, a blended approach
would allow us to detect cracks/potholes at a relatively quick pace while creating a more
user-friendly portal for viewing collected data. While we recognize the value in the other
two approaches, we settled on a blended application. Our current proposed design is as
follows:

2.1.1 Mobile Application

2.1.1.1 Runs a trained machine learning model for detecting potholes/cracks using
TensorFlow Lite

2.1.1.2 Captures images when a potential crack or pothole is detected

2.1.1.3 Sends the image, date, time, and location data to the server either as
detections are made or in a batch at user request

2.1.2 Server

2.1.2.1 Receives the image and relevant data from the mobile application

2.1.2.2 Stores the original image and relevant data in a database

2.1.2.3 Makes the image and relevant data accessible to the web portal

2.1.3 Database

2.1.3.1 Stores the captured image, location, date, time, and a unique identifier for
each detected crack/pothole

2.1.4 Web-based User Interface

2.1.4.1 Displays collected images, location, date, and time for each detection

SDMAY​20-18 10

Figure 1​: Activity Diagram

Figure 2:​ Deployment Diagram

SDMAY​20-18 11

2.2 D​ESIGN​ A​NALYSIS
With this design approach we were able to combine the strengths of the other two
options. We believe that doing detection in-app will cut down on the amount of required
data. By detecting cracks/potholes as we go we can keep only relevant data, and
therefore less storage is required both on the device and in the database.
It is also worth noting, however, that this design came with some concerns. While we are
satisfied with how a mobile device makes inferences, making detections server-side on
videos would allow for more accuracy at high speeds. With a Pixel 4 XL the device was
able to make detections at about 7-10ms per inference. Limitations in mobile hardware
with both the camera quality, camera speed, and processing power may inhibit
performance on some devices.
Another large design choice we have made was to develop the application for Android
devices. Our group has significantly more experience with creating Android applications
and each member owns an Android device. Helpful frameworks, like TensorFlow Lite,
have been created by Google and also have greater support and documentation for
Android.
Initially, we were apprehensive of the blended approach being attainable, but as we
continued to research and implement prototypes it increasingly proved to be a valid
option. We found an offshoot of TensorFlow named TensorFlow Lite that is optimized
for mobile. After working through some examples of TensorFlowLite YOLO detection,
we felt with some adjustments the application would be able to inference quickly.

2.3 D​EVELOPMENT​ P​ROCESS
We followed an Agile approach to this project. Our sprints were roughly two weeks in
length and included biweekly demos with our client. Tasks were organized on Trello with
task designation occuring during weekly team meetings. We used GitLab for
organization and Google Drive for organization and creation of documentation.

2.4 E​NGINEERING​ S​TANDARDS​ & D​ESIGN​ P​RACTICES
We used a handful of design practices to ensure maintainability and help foster a
smoother development process.
2.4.1 Standardized Tooling and Technologies
The tools and technologies used in this project were evaluated and chosen based on both
their effectiveness, and the ease of use and implementation by team members. By
choosing a standardized set of tools and technologies that all members were comfortable
with, we were able to aid each other much more quickly when issues arose.

SDMAY​20-18 12

2.4.2 Process Standards
Early on in the planning stage we agreed upon a process which we could all follow when
developing this project. Tasks were divided into cards on Trello, which were assigned in
meetings, completed by members, discussed in following meetings, and reviewed before
being merged with completed tasks.
2.4.3 Standardized Coding Style
To aid readability and maintainability of this project, our group created a document that
outlined a standardized coding style. This document includes information such as
naming conventions, commenting conventions, and indentation.
2.4.4 Code Quality Control
Before code is merged to the overall project, it is reviewed by at least one other group
member for adherence to the standardized coding style.

2.5 D​ESIGN​ P​LAN

The mobile application will be designed for Android targeting API level 27 or later to
allow the use of the existing Neural Networks API designed by Google. It will utilize
TensorFlow Lite to make inferences using a trained model. The model will be trained to
detect transverse cracks, longitudinal cracks, and potholes. Detections will be made on
the device using the model and back-facing camera, and collected images will be stored
on the device until the device is connected to the internet. If internet connectivity is
available, the device will send images to the server that have not been sent already using
the Volley library.

The server was with Node.js and utilized the API to store data in a MySQL database. If
the API or server were to shut down for any reason, the data will remain uncorrupted and
the Android and web interfaces will display appropriate error messages. Following the
reception of images, the server will store the incoming data in the database.

The web interface will allow users to view and retrieve existing data from the database,
including images, location, date, and time in an easy to read format. From the web
portal, if the user disagrees with the classification of a crack/pothole, they can either
manually delete the detection or manually change the type of the crack/pothole.

SDMAY​20-18 13

3. Statement of Work

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE
Previous work demonstrates advances in object detection algorithms have lead to
research leveraging deep learning for road damage. From the literature there were three
popular methods for realizing this task; the first leverages a simple convolutional neural
network (CNN) architecture which is used for inference to generate simple bounding
boxes during run time. The second leverages more complex CNN architectures which
semantically segment the objects from the background. Finally, the last provides an
alternative approach to crack detection using a conditional Wasserstein Generative
Adversarial Network (WcGAN). For our project we are specifically trying to detect
potholes, longitudinal cracks, and transverse cracks in concrete. Furthermore, our task
involves detecting the severity level of each crack, as well as using a smartphone for data
collection. The combination of these three requirements has yet to be realized.

First, from the article titled “Road Damage Detection Using Deep Neural Networks with
Images Captured Through a Smartphone”[1], the authors created their own custom
dataset by mounting a smartphone to the dashboard of a car that takes photos every
second. From this dataset they collected over 9,000 images in which they used alongside
the SSD Mobilenet architecture to train weights and biases for object detection. SSD is
an object detection framework which uses a single feed-forward CNN to directly predict
classes and anchor offsets without requiring a second stage per-proposal classification.
The authors implement SSD using both Mobilenet and Inception V2 and conclude that
implementing SSD using mobilenet on a smartphone is the faster option of the two.

Second, the article titled “A Deep Learning Approach for Road Damage Detection from
Smartphone Images”[2] uses the same dataset to evaluate road damage, however instead
of using the SSD architecture they use YOLO. This article YOLO, however their results
are not tested on a mobile device. Our research has determined that in order to get this
working in a smartphone, a lighter weight version of YOLO is required to be used to
derive the weights that will map the input data to our desired bounding box detection
outputs.

Next, in the article titled “​Road Damage Detection and Classification with Faster
R-CNN”[3], ​ they use pixel-level segmentation to annotate and identify cracks in the
pavement. While this approach is more accurate, it is more computationally expensive.
Finally authors in the article titled “​Road Damage Detection and Classification with
Faster R-CNN” leveraged ​an approach using a conditional Wasserstein generative
adversarial network (WcGAN) is used. Using this technique the authors were able to
generate synthetic training data which would allow a deep learning practitioner to train an

SDMAY​20-18 14

object detection model with the generated images to improve the detectors accuracy,
resulting in a highly accurate object detector.

For our project we are specifically planning to detect potholes, longitudinal cracks, and
transverse cracks in concrete. Furthermore, our task involves detecting the severity level
of each crack, as well as using a smartphone for data collection. The combination of these
three requirements has yet to be realized.

3.2 T​ECHNOLOGY​ C​ONSIDERATIONS
Implementing a convolutional neural network (CNN) to train your own custom object
detector is a highly complex task we will achieve through a combination of the right
operating system, hardware, and software. We have strategically chosen a technology
stack which will fulfill the requirements of the project and be easy to pick up for people
new to machine learning with the help of our extensive documentation.

Linux Ubuntu 18.04 is used to build our development environment where we will
manage all of our third party libraries used for training the weights and biases of our
object detectors. Linux Ubuntu 18.04 has an active community of support for deep
learning practitioners and is great for establishing a development environment for deep
learning.

A GeForce 930MX Graphics Processing Unit (2GB) will be used for intensive processing
during training. For our initial prototype we fed over 9,000 images into a custom
developed yolov2-tiny object detection architecture that we used to train 3 classes that
detect transverse cracks, longitudinal cracks, and potholes respectively. With this many
images and multiple classes, the task of training weights for inference requires the matrix
multiplication of millions of parameters stored as n-dimensional matrices. GPU’s allow
thousands of threads to be run concurrently in contrast to one or two threads per CPU
core which exponentially reduces training time.

Our prototype implementation of our object detector was specifically trained and ran
using CUDA, OpenCV, and Tensorflow. CUDA enables GPU acceleration that
facilitates the processing-intensive matrix multiplication operations involved in training a
custom object detector. OpenCV performs inference and generates the bounding boxes
which display the predicted object and confidence level of this prediction.

SDMAY​20-18 15

3.3 T​ASK​ D​ECOMPOSITION
3.3.1. Gather Requirements

3.3.1.1 Gather functional requirements

3.3.1.2 Gather non-functional requirements

3.3.2. Gather Domain Knowledge

3.3.2.1 Gather information on problem context

3.3.2.2 Gather information on data collection mechanism

3.3.3. Implement a Custom Object Detector

3.3.3.1 Choose multiple CNN architectures to train and to test

3.3.3.2 Setup the development environment to train and run inference

3.3.3.3 Extensively document installation steps

3.3.3.4 Using multiple YOLO architectures to train road damage detectors

3.3.3.5 Run tests on custom object detectors

3.3.4. Create a Custom Dataset for Object Detection

3.3.4.1 Identify pre-existing datasets for road damage detection

3.3.4.2 Integrate pre-existing datasets

3.3.5. Scale a Custom Object Detector to a Mobile Device

3.3.5.1 Collect data for custom dataset for road crack detection

3.3.5.2 Create a custom dataset

3.3.5.3 Install Tensorflow

3.3.5.4 Extensively document tensorflow installation instructions

3.3.6. Test the Object Detection System’s Ability to Generalize

3.3.6.1 Collect data for custom dataset for road crack detection

3.3.6.2 Create a custom dataset

SDMAY​20-18 16

3.3.6.3 Install Tensorflow

3.3.6.4 Extensively document tensorflow installation instructions

3.3.6. Implement UX / UI Design

3.3.6.1 Design user friendly AI for Android application.

3.3.6.2 Parse GPS coordinates from image metadata

3.3.6.3 Create web based UI for severity level recognition

3.3.7. System Level Testing

3.3.7.1 Test and measure the speed and accuracy of object detection

3.3.7.2 Test the integration of Android, the server, and web-based UI

3.4 P​OSSIBLE​ R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT
Risk Occurrence Scale

1. Improbable: unlikely to happen - frequency:​ 0
2. Remote: unlikely but possible - frequency: ​0.01
3. Occasional: could happen sometimes - frequency: ​0.05 - 0.1
4. Probable: is expected to happen - frequency: ​0.1-0.3
5. Frequent: will occur several times in the year: ​1

Risk Impact Scale

1. Negligible:
2. Minor: late ​1 week ​with ​no penalty
3. Serious: late less than ​2 weeks​ with ​10% penalty
4. Critical: late less than​ 3 weeks ​with ​20% penalty
5. Catastrophic: late more than ​4 weeks​ with ​30% penalty

SDMAY​20-18 17

Risk Exposure Matrix

Table 1.​ Risk Exposure matrix

Risk Evaluation

Risk Occurrence Impact Exposure

Hard drive fails - lose training software 0.01 2 Very Low

Table 2.​ Risk Evaluation

Risk Breakdown

Title:​ Hard drive fails - lose training software
Response:​ Risk Reduction
Justification: ​Overall our project plan is very well thought out and we are confident that
we’ll be able to achieve our goals, the only risk that our team could think of would be if
our hardware where all of the training software was installed failed at some point that this
would set us back about a week or so in installation times. For this reason we
documented all of the steps for installing Cuda, Tensorflow, and OpenCV.
Mitigation Action: ​ Documentation on installation steps of all open source software
compiled from sources has been created.

SDMAY​20-18 18

3.5 P​ROJECT​ P​ROPOSED​ M​ILESTONES​ ​AND​ E​VALUATION​ C​RITERIA
Milestone 1: Preliminary Phase is Complete

● Functional requirements gathered.
● Nonfunctional requirements gathered.
● Cuda 9.0 + cudnn v7.3.0 and Darknet installed
● OpenCV Version 4.0.0 installed.
● Tensorflow r1.12 installed.
● Installation steps documented for all 3rd party software.

Milestone 2: System Design is Complete

● All parts designed for networking.
● All parts for user interface are designed.
● Create database diagram.
● Create high level systems level diagram.

Milestone 3: System is Constructed

● Object detection integrated into Android smartphone app that detects initial cracks
and potholes.

● Web UI allows clients to view the results of server-side object detection.
● All parts of the system are integrated.

Milestone 4: System Testing is Complete

● Data collection has been tested using smartphone mounted in car.
● Testing has been completed to verify an image can be sent to the server.
● Testing has been completed to verify the processed image can be viewed on the

Web UI.

3.6 P​ROJECT​ T​RACKING​ P​ROCEDURES
Our group is using a Trello board to track work that is in progress, on the backlog, and
completed. In addition to the trello board we are using GitLab issues. We provide our
team with a standard template to fill out when reporting issues to the repository that
enables easy communication and collaboration in resolving these issues.

SDMAY​20-18 19

Figure 3.​ Trello Board

Figure 4.​ GitLab Issue Tracker

SDMAY​20-18 20

3.7 E​XPECTED​ R​ESULTS​ ​AND​ V​ALIDATION
The desired outcome of our work is to create a 2 valid training models. Our first model
will be intended for use directly on smartphones, and our second model will be a more
heavyweight model which will perform more rigorous crack detection, including multiple
levels of severity. Our model should be generalizable, meaning that the weights that we
generate to perform our crack detection task should work during different times of the
day and on pavement and cracks in different cities. Additionally our results from
validation testing will help us determine if we have reached our goal.

4. Project Timeline, Estimated Resources, and Challenges

4.1 P​ROJECT​ T​IMELINE

Figure 5.​ Gather Requirements and Gather Domain Knowledge Timeline.

SDMAY​20-18 21

Figure 6.​ Implement a Custom Object Detector Timeline.

Figure 7.​ Create a Custom Dataset for Object Detection Timeline.

SDMAY​20-18 22

Figure 8.​ Scale a Custom Object Detector to a Mobile Device Timeline.

Figure 9.​ Test the Object Detection System’s Ability to Generalize Timeline.

SDMAY​20-18 23

Figure 10.​ Implement Server Side Object Detection Timeline

Figure 11.​ Implement UX / UI Design Timeline.

SDMAY​20-18 24

Figure 12.​ System Level Testing Timeline.

4.2 F​EASIBILITY​ A​SSESSMENT

The project will be a mobile application for Android smartphones that will automatically
detect and classify cracks and potholes in the road. The phone will be mounted on the
dashboard or windshield of the user’s vehicle, with the camera facing down towards the
road. The application will record and a video with geotags and timestamps recorded when
a crack/pothole is detected. This information will be sent to a server, where it will
subsequently be processed through the classification algorithm and returned with a list of
the cracks/potholes, their location, and their classification.

We have quite a few foreseen challenges to this project. Since the user is mounting the
device, there is a lot of different angles that the camera could be facing the road at. We
must find a way to allow that kind of variation, or give them a strict method of mounting
the phone. Additionally, since we will also we surveying highways, we need to be able to
identify cracks at high speeds. Since phones can only record at 60fps, we may have to
limit the max speed of the user.

4.3 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS

SDMAY​20-18 25

Fall Timeline

Week Task Personnel Effort
Requirements

Week 7 - 10/10 Cuda 9.0 +cudnn v7.3.0
and Darknet installed,
update any documentation
that needs to be created or
updated regarding this
process.

5-6 hrs

Week 8 - 10/17 OpenCV Version 4.0.0
installed, update any
documentation for this
install, should now be able
to run and test training a
Darknet model, identify
key datasets for training

3 hrs

Week 9 - 10/24 Tensorflow r1.12 (larger
build, may have more
errors so extending this
build and documentation
step to span 2 weeks),
choose criteria for labeling
and begin labeling data for
training

5 hrs

Week 10 - 10/31 Tensorflow r1.12, begin
training data, training
experiments: follow
training steps from ​this
document​. Also test the
accuracy difference in
unprocessed and
preprocessed datasets. Try

7 hrs

SDMAY​20-18 26

https://docs.google.com/document/d/1M7VnxoVdCRekQU2fwlhRmVmHuiexyxIzQfa_ZtGs0fE/edit
https://docs.google.com/document/d/1M7VnxoVdCRekQU2fwlhRmVmHuiexyxIzQfa_ZtGs0fE/edit

preprocessing the data in
multiple distinct ways.

Week 11 - 11/7 Convert Tensorflow model
to Tensorflow Lite model
(challenging task, may
need to switch to a
different model if this has
not been completed by this
date)

10 hrs

Week 12 - 11/8 Integrate our converted
models into Android app
and begin testing our
models to see which ones
have the highest accuracy.

10 hrs

Week 13 - 11/15 Start training new models
based on the prior noted
tweaks

4 hrs

Week 14 - 11/21 Test these models 2 hrs

Week 15 - 11/28 Wrap up documentation
and results, come up with
plan for next semester

3 hrs

Week 16 - 12/1-1/13 Break None

Table 3.​ Fall Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is to
be done in the week leading up to each Thursday. The personal effort requirements are also listed alongside

each week’s work.

SDMAY​20-18 27

Spring Timeline

Week 17 - 1/16 Begin developing frontend
UI in android studio.
Configure server and begin
backend development.

10 hrs

Week 18 - 1/23 Begin incorporating
detection into the frontend
and classification into the
backend.

7 hrs

Week 19, 20, 21 -
1/30-2/13

Begin testing algorithms on
real world roads and
making appropriate
adjustments.

4 hrs

Week 22 - 2/20 Finish draft of user screens. 12 hrs

Week 23 - 2/27 Begin creating interaction
between frontend and
backend.

10 hrs

Week 24 - 3/5 Finalize interaction
between frontend and
backend.

12 hrs

Week 25, 26, 27, 28

3/12-4/2

Test application and make
appropriate adjustments.

40 hrs

Week 29 - 4/9 ​Test out final draft of
application.

6 hrs

Week 30 - 4/16 Make any final
adjustments.

10 hrs

SDMAY​20-18 28

Week 31 - 4/23 Submit project and reflect
on feedback.

2 hrs

Table 4.​ Spring Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is
to be done in the week leading up to each Thursday. The personal effort requirements are also listed

alongside each week’s work.

4.4 O​THER​ R​ESOURCE​ R​EQUIREMENTS
We will need YOLO, cuda, and Tensorflow lite for software requirements. We will also
need a smartphone, a computer to host a server on, and a dashboard mount, which will be
provided by our advisor.

4.5 F​INANCIAL​ R​EQUIREMENTS
We will require a laptop to use as our own project server. This way the project can be
accessed by our client and advisor after we graduate.

5. Testing and Implementation

5.1 I​NTERFACE​ S​PECIFICATIONS
This project’s outcome consists of implementing an algorithm to be used on a mobile
phone mounted in a car. Therefore, the algorithm will run on a phone with a graphical
interface with minimal user input once the user has initiated the program. i.e the user
should be able to input all commands before starting the cracks/potholes detection. The
interface should display a real-time video feed of identified transverse cracking,
longitudinal cracking, and potholes. Thus, by using real-time data for the testing, we will
improve the chances of the algorithm to detect issues that may occur on the user’s end.

5.2 A​LGORITHM​ I​MPLEMENTATION
For our convolutional neural network architecture we chose SSD Mobilenet. SSD
Mobilenet is an optimized version of the SSD architecture. It contains less filters, and

SDMAY​20-18 29

also leverages depth-wise separable convolution, which makes it importantly lightweight
and able to detect fast on mobile devices while also detecting relatively accurately.

5.3 A​NDROID​ A​PPLICATION​ I​MPLEMENTATION
The Android application was created using Android Studio and made to target API 27.
This application was developed with both Java and Kotlin and utilizes Android’s new
CameraX library. To make inferences using the trained model, the app utilizes
TensorFlow Lite as well as some of the functions provided by Google’s Neural Networks
API. Once detections are made, images and relevant information are saved to the device
or sent to the server using HTTP requests aided by the Volley library. Upon opening the
app, the user is prompted to log in using a simple login/account creation page. Once
logged in, user interaction is simple and limited to a start/stop button which either starts
or stops inferencing using the back-facing camera.

5.4 B​ACKEND​ I​MPLEMENTATION
For the backend of this project we procured a Ubuntu VM from SSG in Coover. On this
VM we operate our Node.js server which has routes for all HTTP requests for the project
as well as the MySQL database. HTTP requests are sent to the Node.js server, which
then executes functions to format and store/retrieve the data within the database. Images
sent to the server are stored on the server filesystem, with references to the image name
within the database.

5.5 W​EB​ P​ORTAL​ I​MPLEMENTATION
The web portal was implemented using React.js, JavaScript, HTML, and CSS with an
account creation page, login page, and dashboard. Both the account creation and login
pages are simple, standard, and intuitive user interfaces. The dashboard consists of two
vertical panes. Left consists of a list of list items that include unique identifiers for
cracks/potholes as well as detected types. The list is sortable based on type. When a
crack is selected from the left pane its details are displayed within the right pane. Details
included are location, date, time, type, image of the crack, and a Google Maps pin of the
location on a map. The map and pin are included using the Google Maps API and GPS
location sent from the Android application.

5.6 F​UNCTIONAL​ T​ESTING
To verify that the final product meets the quality expectations and requirements
specifications, an actual driving test will be performed to locate defects in the algorithm.
During this test, we will drive (in normal weather conditions) in certain areas and collect

SDMAY​20-18 30

enough data which we will in turn use to assess the actual outcome compare to what is
expected. Nevertheless, this testing mechanism does not guarantee that all defects will be
identified. Thus, with the outcome, we will decide whether to improve our algorithm and
fix the issues (if severe) or whether to consider that the algorithm minimum requirements
have been met.

To achieve functional testing, we will identify functions that the algorithm is expected to
perform. Then create input (i.e. feeding images/videos) data based on the function’s
specifications and determine the output based on these specifications. Finally, we will
execute test cases and compare the actual and expected outputs.

Figure 13. ​Ground truth label before training ​Figure 14. ​Bounding box generated
 yolo v2 weights from inference.

5.7 N​ON​-F​UNCTIONAL​ T​ESTING

While functional testing will test the functionality of the algorithm, non-functional testing
is also very important and should be taken into consideration right from the inception of
the algorithm. Hence, the user should be able to mount the mobile phone in the car prior
to its usage and shouldn't need to have prior knowledge about how to use the application.

SDMAY​20-18 31

5.8 P​ROCESS

As indicated in section 2, there are three major processes to select from: a mobile
application with all the detection features included; a mobile application that transfer all
the data collected to a server which does all processing; or a spit of detection features
between the mobile app and the server. To be more efficient, we used a combination of
those methods. The following illustrates how we tested those processes.

To test the mobile application, we looked at the images that were sent on the server by
the app and verified that each of them depicts the types of cracks/potholes we were
expected. In addition, we made sure that for each of those images, the location
coordinates also match the values in our database. A similar approach was done to test
the Node.js server, except the images from the mobile application are not processed prior
to their transfer to the server. i.e, the server does all the processing. Finally, for the SQL
Database, we test the output by using a large dataset of stored images, locations, and
severity classifications.

5.9 R​ESULTS
So far, we have a training environment setup and configured with CUDA and cuDNN
module. We have tested multiple machine learning frameworks such as Keras and
TensorFlow. By using tensorflow to start the training of some models for object
detection, we have successfully trained a custom model, identified a sample dataset to
test the framework on, and have a good understanding on how to label images in
labelImg. In addition we have a custom configuration of OpenCV to build with CUDA
and cuDNN modules among other custom modules. Finally, we have visualized results
of the model using OpenCV 4 which drew the bounding boxes around the object
detection predictions.

SDMAY​20-18 32

Figure 15. ​Object detection performs system ​Figure 16. ​Object detection system detects
 transverse and longitudinal crack detection potholes.

6. Closing Material

6.1 C​ONCLUSION

To sum up, the goal of this project was to develop an algorithm that can analyze the
images/videos taken by a phone camera and identify the types and severity levels of
cracks found. The best plan of action to achieve this goal was to automate this analysis
using feeds recorded by a smartphone mounted on the windshield of a car; this technique
coupled with GPS coordinates proved to help engineers locate the cracking position and
develop a pavement maintenance/rehabilitation plan accordingly.

6.2 R​EFERENCES
[1] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road Damage Detection and
Classification Using Deep Neural Networks with Smartphone Images,” Computer-Aided Civil and
Infrastructure Engineering, vol. 33, no. 12, pp. 1127–1141, 2018.

SDMAY​20-18 33

[2]A. Alfarrarjeh, D. Trivedi, S. H. Kim, and C. Shahabi, “A Deep Learning Approach for Road Damage
Detection from Smartphone Images,” ​2018 IEEE International Conference on Big Data (Big Data)​, 2018.

[3] W. Wang, B. Wu, S. Yang, and Z. Wang, “Road Damage Detection and Classification with Faster
R-CNN,” ​2018 IEEE International Conference on Big Data (Big Data)​, 2018.

[4] Mei, Qipei & Gül, Mustafa. (2019). A Conditional Wasserstein Generative Adversarial Network for
Pixel-level Crack Detection using Video Extracted Images.

[5] K. Gopalakrishnan, “Deep Learning in Data-Driven Pavement Image Analysis and Automated Distress
Detection: A Review,” ​Data​, vol. 3, no. 3, p. 28, 2018.

[6] Web.stanford.edu. (2019). [online] Available at:
https://web.stanford.edu/class/ee368/Android/Tutorial-3.pdf [Accessed 4 Oct. 2019].

[7] Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X. and Ling, H. (2019). Feature Pyramid and
Hierarchical Boosting Network for Pavement Crack Detection. ​IEEE Transactions on Intelligent
Transportation Systems​, pp.1-11.

[8] Cubero-Fernandez, A., Rodriguez-Lozano, F.J., Villatoro, R. et al. Efficient pavement crack detection
and classification. J Image Video Proc. 2017, 39 (2017).

[9] Y Huang, B Xu, Automatic inspection of pavement cracking distress. J. Electron. Imaging. 15(1),
013–017 (2006).

[10] L Li, L Sun, G Ning, S Tan, Automatic pavement crack recognition based on Bp neural network.
PROMET-Traffic Transp. 26(1), 11–22 (2014).

[11] Weixing W., et al. Pavement crack image acquisition methods and crack extraction algorithms: A
review, Journal of Traffic and Transportation Engineering (English Edition), vol 6, no. 6, 2019.

6.3 A​PPENDICES
APPENDIX A: OPERATION MANUAL

APPENDIX B: ALTERNATIVE DESIGNS

SDMAY​20-18 34

Figure 17​: Diagram of Crack Detection System

Figure 18​: Deep Learning Framework on Convolutional Neural Network

SDMAY​20-18 35

Figure 19​: Crack Classification Based on Image Processing and Machine Learning

APPENDIX C: OTHER CONSIDERATIONS

Image-based techniques are fundamental in pavement crack detection. Various
approaches have been proposed to detect cracks. Below is a brief overview of other

SDMAY​20-18 36

methods that should be taken in consideration. These methods can be combined to
improve the overall detection of cracks.

Huang and Xu [9] describe in their work how they implement a complex system to
capture images of the pavement to detect cracks. Once the image is captured, three main
steps are performed: divide the image in grid cells of 8×8 pixels and classify each cell
into a non-crack or crack cell. After that, crack cells are verified, comparing each one to
their neighbors and, finally, crack clusters are connected to form the actual final cracks.
Based on the starting and ending coordinates, the crack is finally classified as
longitudinal or transverse.

Li et al. [10] take advantage of neural networks to detect cracks. Before the learning and
classification process, a preprocessing step is performed. First, the image background is
corrected, by making it more uniform. Then, in order to transform the image into a
smoother one, a Gaussian smoothing is used. Finally, a histogram transformation is
applied to highlight the crack. After the preprocessing, several techniques are used to
split the image into smaller subimages. The background is removed and each sub-image
is classified depending on whether it contains a crack or not. Only the images that contain
cracks are selected and two different neural networks are used to classify these images.
The first one classifies whether the crack has linear (either transverse or longitudinal) or
alligator form. After that, the second one classifies between longitudinal and transverse
cracks.

Once the images are captured, Cubero et al. [8] describe how several processes are
applied in order to extract the main characteristics for emphasizing the cracks. After
image preprocessing, a decision tree heuristic algorithm is applied to finally classify the
image. This process produces an average of 88% of success detecting cracks and an 80%
of success detecting the type of the crack. This method can be implemented in a vehicle
traveling as fast as 130 kmh or 81 mph.

SDMAY​20-18 37

