
SnapCrack
Akira Demoss, Maggie Dalton, Modeste Kenne, Nik Thota

sdmay20-18

Client: Bo Yang

Adviser: Halil Ceylan

Team email: sdmay20-18@iastate.edu

Team website: http://sdmay20-18.sd.ece.iastate.edu/

Revised: 10/6/2019 (v1)

Executive Summary

Development Standards & Practices Used
List all standard circuits, hardware, software practices used in this project. List

all the Engineering standards that apply to this project that were considered.

Summary of Requirements

List all requirements as bullet points in brief.

Applicable Courses from Iowa State University Curriculum
List all Iowa State University courses whose contents were applicable to your

project.

● CPRE 388 (Embedded Systems II: Mobile Platforms)

● COM S 309 (Software Development Practices)

http://sdmay20-18.sd.ece.iastate.edu/

● COM S 311 (Algorithm Analysis & Design)

● COM S 363 (Database Management)

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

● Machine Learning

○ Setting up/using TensorFlow

○ Labeling data sets

○ Training algorithms

● Servers

○ Creation

○ Management

○ Interactions with other platforms

SDDEC18-XX 1

Table of Contents
1 Introduction 4

1.1Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 4

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2. Specifications and Analysis 5

2.1 Proposed Design 5

2.2 Design Analysis 6

2.3 Development Process 6

2.4 Design Plan 6

3. Statement of Work 6

3.1 Previous Work And Literature 6

3.2 Technology Considerations 7

3.3 Task Decomposition 7

3.4 Possible Risks And Risk Management 7

3.5 Project Proposed Milestones and Evaluation Criteria 7

3.6 Project Tracking Procedures 7

3.7 Expected Results and Validation 7

4. Project Timeline, Estimated Resources, and Challenges 8

4.1 Project Timeline 8

4.2 Feasibility Assessment 8

4.3 Personnel Effort Requirements 8

4.4 Other Resource Requirements 8

4.5 Financial Requirements 9

5. Testing and Implementation 9

5.1 Interface Specifications 9

5.2 Hardware and software 9

SDDEC18-XX 2

5.3 Functional Testing 9

5.4 Non-Functional Testing 9

5.5 Process 10

5.6 Results 10

6. Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

SDDEC18-XX 3

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to acknowledge our client, Bo Yang. Bo has been working with us from many angles
to progress on this project, and will likely be a large contributor to our success. The basis for this
project is an unfamiliar topic, but Bo has been guiding us in how to properly classify cracks based
on the LTPP manual. In addition to the help with LTPP, he has forwarded research to us that is
relevant to the project. He has also expressed that he will help us in the event that we need
financial assistance or additional hardware.

1.2 PROBLEM AND PROJECT STATEMENT

The project is trying to minimize the risk that researchers encounter when evaluating roads for
road maintenance and increase the speed at which they can evaluate roads. Currently, researchers
must park alongside roads and measure cracks/potholes by hand to determine the severity of the
damage. This measurement is a vital part of determining where to focus research and gather data.
This process is both slow and dangerous; researchers are often standing alongside lanes of high
speed traffic.

Our approach aims to remove the need for people to stop their vehicle and gauge damage severity.
This project will be capable of identifying target crack types and potholes and classify them while
the users are driving. Identified areas will be stored in a database with their location and severity
for later use.

This is planned to be accomplished with a mobile device running a mobile application running a
trained YOLO algorithm mounted on the dashboard or windshield of a vehicle. The app will
inference whether the stretch of road ahead of the device contains a pothole or crack. From there,
the mobile device will snap an image and send it to a remote server along with the location of the
image for classification. The server will run the image through a classification algorithm to
determine the severity of the pothole/crack and then store the classification, location, and other
important data in a database for use by the users.

1.3 OPERATIONAL ENVIRONMENT

The general operational environment for this project will be on a mobile device mounted on either
the dashboard or windshield of a car using a 3rd party mounting device. Although the device will
not withstand any extreme weather conditions, the user will not be capable of interacting with it
while driving. It must be capable of running automatically after minimal user set-up prior to
driving, and operate in a non-distracting manner to the driver until manually terminated.

1.4 REQUIREMENTS
● Easy to use

○ Simple UI design that requires no prior knowledge to operate

SDDEC18-XX 4

○ Minimal setup required to begin use
○ No additional actions required from the user once started until the user chooses to

end use of the application
● Low cost

○ No additional hardware outside of the mounting device
○ Cost-effective server and database management

● Able to identify/classify on diverse roads
○ Ability to function at a variety of speeds (10mph - 70mph)
○ Ability to function with different road types (composite/asphalt/etc.)
○ Ability to detect and classify specified crack types/potholes using criteria from the

LTPP distress manual
■ Transverse Cracks
■ Longitudinal Cracks
■ Potholes

○ Saves the location of detected cracks/potholes

1.5 INTENDED USERS AND USES

The intended users for the deliverables from this project are researchers. Researchers in this area
require measurements of cracks and potholes in the road, but gathering those measurements are
both time consuming and dangerous. By using this project, researchers will be able to gather
images and classify cracks/potholes much quicker than they could manually. Researchers will also
be able to complete this task from their vehicle, which will be safer than roadside. They prioritize
accuracy and availability of data, so we will focus on those two ideas when implementing our
project.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● The mobile device will be mounted using a third party mounting device on either the
dashboard or windshield

● The application will be started prior to the user driving, requiring no interference until the
user has finished evaluating their target area

● The product will not be used outside of the United States
● There will be 10 or fewer concurrent users sending/receiving data from the server at a given

time
○ Primary focus as defined by the client is on creating a functioning and accurate

algorithm and less on supporting multiple users
● Data obtained from the application and any processing of the data will be stored in a

centralized database
○ We don’t currently foresee different organizations using this application

simultaneously

Limitations

● The application should be run on commercially available mobile devices without the use of
additional hardware (outside of the mounting device)

SDDEC18-XX 5

● The application should be simple to use, requiring no prior knowledge of machine
learning, LTPP crack classification, or any other prior knowledge to operate

● The classifications will be categorized using criteria from the LTPP distress manual

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The deliverables include an Android application, Node.js server, and SQL database.

The Android application shall be free and available on the Google Play Store. It will require no
additional downloads to the Android device to be operational. It will operate exclusively with the
delivered server and database using an API designed for this project. This application will be
capable of capturing images of roads while the user is driving and sending them to the delivered
server.

The server and database will be made available to the client with little to no additional action
required to operate. It will be simple to start/terminate the server and no additional action should
be required in order to utilize the application in its full capacity. They will operate exclusively with
each other and the delivered Android application. The database will be capable of storing relevant
data to the classification of cracks/potholes as specified by the client.

Documentation for the process of using each component and making general expansionary
modifications will also be made available. This will include, but is not limited to, restarting each
component, wiping each component of data and restarting, and performing general maintenance,
and error handling. Documentation for how to expand upon the types of classifiable cracks and for
the created API may also be included.

If time permits, an iOS version of the Android application may also be delivered. This may or may
not function to the same capacity of the Android version, but would retain the base functionality of
detecting cracks/potholes and communicating with the server.

All deliverables outlined in this section are expected to be made available at the end of the Spring
2020 semester upon the completion of the CPRE 492 course by the project members.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

We’ve identified three loose approaches to this project; an all-in-one mobile application, a mobile
application that sends data to a server for complete detection/classification, and breaking the
detection and classification up between the mobile app and the server. Each approach has pros and
cons. The all-in-one application would be the simplest and least data-intensive option for the end
user, but may function too slowly to detect cracks/potholes at higher speeds. On the other hand,
doing all of the detection and classification server side would be extremely accurate but require
sending video to the server, and thus be extremely data intensive and requires either enormous
storage or cellular data. Lastly, a blended approach would allow us to detect cracks/potholes at a
relatively quick pace while maintaining accuracy in the more challenging area of classification with
less data.

Our approach
While we recognize the value in the other two approaches, we settled on a blended application.
Our current proposed design is as follows:

● Mobile application

SDDEC18-XX 6

○ Running a trained YOLOv3-tiny model using TensorFlowLite for detecting
potholes and cracks

○ Captures images when a potential crack or pothole is detected
○ Captures the location of where the image was taken
○ Sends the image and relevant data to the server either as detections are made or in

a batch at user request
● Node.js server

○ Receives the image and relevant data from the Mobile application
○ Stores the base image and location in the database
○ Sends the image through a trained classification model for severity classification
○ Receives the output from the classification algorithm and stores the result with the

input image in the database
● SQL Database

○ Stores the captured and unedited image, location, severity classification, and a
unique identifier for each detected crack/pothole

We feel that this combination of technologies will let us have a short inference time to detect
cracks/potholes and maximum accuracy for classification of severity. One requirement is that the
app functions at different speeds, and thus it needs to work quickly enough to scan roads at high
speeds.

2.2 DESIGN ANALYSIS

With this design approach we are able to combine the strengths of the other two options. We
believe that it doing detection in-app will cut down on the amount of required data. By detecting
cracks/potholes as we go, we can keep only relevant data, and therefore less storage is required
both on the device and in the database. In addition, doing the classification server-side will
increase the accuracy of classification. Mobile devices have limited hardware and therefore take
longer to make inferences. If both detection and classification were done in-app it is likely that it
will not be capable of performing at moderate to high speeds.

It is also worth noting, however, that this design comes with some concerns. While we are hopeful
that we can make timely inferences, it may not be possible to detect cracks/potholes at high speeds
(where the demand for this project is the greatest). Limitations in mobile hardware with both the
camera and processing power may inhibit the speed at which the model can make detections.

Initially, we were apprehensive of this blended approach being attainable, but as we continue to
research and implement prototypes it is increasingly proving to be a valid option. We have found
an offshoot of TensorFlow namedTensorFlowLite that is optimized for mobile. After working
through some examples of TensorFlowLite YOLO detection, we feel that with the right adjustments
the application would be able to inference quickly. Although we do not have a prototype with
cracks/potholes yet, we have tested it using pre-trained models for common items and have found
that it inferences with an average of around 50ms per inference.

Moving forward, we will likely stick to this blended approach but how successful a prototype for
cracks/roads performs will influence what type of data we send to the server. In our opinion, the
optimal solution would be if we could inference then snap an image and only send images with
detected cracks/potholes to the server. This would minimize the required data for both detection
and classification. It is currently unclear, however, if the action of inference and taking a picture
would be quick enough to effectively scan the road while driving without creating blindspots. In
the event that images would be too slow, we plan to take video and record timestamps where
detection has occurred along with the GPS location of the detection.

SDDEC18-XX 7

2.3 DEVELOPMENT PROCESS

We are following a Kanban Agile approach to this project. The components of this project (i.e.
mobile application, server, etc.) have been divided into sections (i.e. YOLOv3 model, Android UI,
API, etc.), and each section has been divided further into small tasks (i.e. label dataset, add model
to Android, etc.) using cards on Trello. Tasks on each card are usually discussed at the time
they’re added to the board. Each card is kept in the backlog of the Trello board until members
finish their current in-progress tasks, at which time they can decide upon which card they work on
next from the backlog. The majority of the time, team members choose cards based on their
background and areas of the project they’re most interested in working on. Generally, team
members only have 1-2 active in-progress cards and 0-1 issue cards and complete 1-2 cards per week.
If there is a card that needs to be completed soon, but hasn’t been picked up voluntarily, the team
will discuss the card during the next meeting. During that meeting the card will be assigned to a
member based on their skills, the current workload of the other members, and how urgently the
card needs to be completed.

We’ve had challenges meeting due to diverse schedules, but discussing and documenting cards
when they’re created and adopting a Kanban approach has let us make the most of the time we
meet. Members have ownership over their cards and aren’t dependent on a team meetings to
continue making progress. Each person can take on or complete cards at will. The limit on cards
and documentation on Trello also make it clear what each person is currently working on. Overall,
this approach has worked for us so far.

SDDEC18-XX 8

2.4 DESIGN PLAN

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Previous work demonstrates advances in object detection algorithms have lead to research
leveraging deep learning for road damage detection. In reference [1] and [2], simple bounding box
detectors are used to detect various road anomalies. In reference [3], segmentation is used to
detect road anomalies. Finally, in reference [4] an alternative approach to crack detection using a
conditional Wasserstein Generative Adversarial Network (WcGAN) is described. For our project
we are specifically trying to detect potholes, longitudinal cracks, and transverse cracks in concrete.
Furthermore, our task involves detecting the severity level of each crack, as well as using a
smartphone for data collection. The combination of these three requirements has yet to be
realized.

 In [1], SSD Mobilenet is used for detection. While this algorithm is more accurate, the detection
speed is slow. In [2], they reference using YOLO, however they provide no evidence of having an

SDDEC18-XX 9

actual working model in a smartphone. Our research has determined that in order to get this
working in a smartphone, a lighter weight version of YOLO is required to be used to derive the
weights that will map the input data to our desired bounding box detection outputs. The lighter
weight algorithm utilizes less convolutional layers and also uses max pooling layers as opposed to
residual layers. Because these layers also determine the feature maps, it logically makes sense that
this will reduce the accuracy, while giving us a boost in detection speed. This will allow us to run
the algorithm in real time which is favorable for our project because we hypothesize the trade off in
accuracy for real-time performance will improve the number of detected objects. For example, a
highly accurate detection algorithm which is only capable of running at 3 frames per second is not
useful for detecting cracks in a vehicle that is moving at 50 miles per hour. This is because by the
time the detector has run, it may have already missed dozens of cracks due the time spent
processing the data. With our proposed approach we will be able to easily map the gps coordinates
to road anomalies picked up by our algorithm. In approach [3] they use pixel-level segmentation to
annotate and identify cracks in the pavement. While this approach is more accurate, it is more
computationally expensive. Finally in [4], an approach using a conditional Wasserstein generative
adversarial network (WcGAN) is used. While very accurate, the disadvantage is the large
computational costs e.g. method were tested on a desktop with Intel 8700k CPU, 32GB memory
and Nvidia Titan V GPU with 5120 CUDA cores. If time permits, we may use use a GAN to generate
synthetic training data, however this is currently a stretch goal.

3.2 TECHNOLOGY CONSIDERATIONS

For technology we are limited to what we personally own. Access to laptops with administer rights
were thankfully provided to us by the SSG, these laptops have CUDA capable gpus which will allow
us to all work on the algorithm, however because our gpus are limited in computational power, we
will not be able to train quickly. Despite this we are still confident we will be able to develop a
valuable research product.

3.3 TASK DECOMPOSITION

Task 1.) Set up the development environment and document setup steps so that work can be
reproduced by our client. Because our client is a researcher and his background is in another
expertise, it will be valuable for our client to have a way to reproduce our results. This task involves
installing Cuda 9.0 +cudnn v7.3.0 and Darknet, OpenCV Version 4.0.0 installed, and Tensorflow
r1.12 and updating any documentation that needs to be updated regarding these installation steps.
Additionally, we will need to test to make sure that everything is installed correctly. We can test
this by running scripts that have been made previously and verifying that the build is working.

Task 2.) Run the training algorithm on “toy” datasets to gain a basic understanding of how model
configuration and training work. For this task we will find pre-existing datasets that follow deep
learning best practices and use these to learn the basics of configuring a model for training. After
we are comfortable with this, we will move on to identifying datasets that will work for our specific
task.

SDDEC18-XX 10

Task 3.) Training a model for basic anomaly detection. The two types of road anomalies we will
need to detect are cracks and potholes. We will write a basic detection algorithm that is fast,
lightweight, and will run on a mobile phone so that we are able to trace the precise gps coordinates
of our detected anomalies.

Task 4.) Once we have a basic detection algorithm written, we will work to refine this algorithm.
There are several experiments that we have in mind regarding refining our algorithm. The first step
will be to test and see if preprocessing our data will give us more accurate detection results. In this
task we will need to create a realistic test dataset and apply various preprocessing techniques to our
existing dataset. Additionally to refine our algorithm we will experiment with tweaking important
parameters in our neural network. The two most important parameters that we will work on
tweaking include the learning rate, and regularization.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

There are many challenges for this project. We are working to achieve results on a solution that
leverages deep learning with limited computational resources outside of the laptops we were able
to check out from the SSG. Some papers cite using a 32GB graphics card with state of the art CPU,
while we will be working on a 2GB graphics card for all of our training experiments. Additionally
there is a shortage of faculty with deep learning expertise and no one we have been able to identify
for guidance on our approach additionally none of our team members have had formal coursework
in the area of deep learning. This means that along with completing tasks it is necessary for us to
also educate ourselves and each other on findings and how things work to make sure that our
methods and approach to our project are logical and follow best practices in alignment with the
field of deep learning. Because there still remain areas of the project in which we “don’t know what
we don’t know”, it is likely we may have periods of time where we need to spend more time
educating ourselves than completing physical tasks and objectives in order to come up with a
logical and effective solution that will be able to be further developed. Finally, inherently deep
learning requires a complex technology stack and

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Task 1 Milestones

● Cuda 9.0 + cudnn v7.3.0 and Darknet installed, update any documentation that needs to be
created or updated regarding this process.

● OpenCV Version 4.0.0 installed, updated documentation for this install, able to run and
test training a Darknet model, identify key datasets for training.

SDDEC18-XX 11

● Tensorflow r1.12 built, and criteria for labeling data for training.

Task 2 Milestones

● “toy” dataset identified. This dataset should have positive and negative examples, and
include a script which divides the dataset into training, testing, and validating data
respectively.

● Weights trained from a “toy” dataset to validate that software has been properly
configured.

● Identified key prospective datasets for our application and evaluate if it makes sense to
create our own dataset, or if adequate pre-existing public datasets exist.

Task 3 Milestones

● Identify and implement strategies for preprocessing data and data augmentation to be
applied prior to training and improve detection accuracy this way.

● Tweak model configuration parameters which result in improved detection accuracy.

3.6 PROJECT TRACKING PROCEDURES

Our group is using a Trello board to track work that is in progress, on the backlog, and completed.

3.7 EXPECTED RESULTS AND VALIDATION

The desired outcome of our work is to create a 2 valid training models. Our first model will be
intended for use directly on smartphones, and our second model will be a more heavyweight model
which will perform more rigorous crack detection, including multiple levels of severity. Our model
should be generalizable, meaning that the weights that we generate to perform our crack detection
task should work during different times of the day and on pavement and cracks in different cities.
Additionally our results from validation testing will help us determine if we have reached our goal.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Based off of Task list

Timeline:

Fall Semester:

SDDEC18-XX 12

Each date is a Thursday, which is when we meet with our advisor. The work is to be done in the
week leading up to each Thursday.

Week 7 - 10/10 (5-6 hrs): Cuda 9.0 +cudnn v7.3.0 and Darknet installed, update any documentation
that needs to be created or updated regarding this process.

Week 8 - 10/17 (3 hrs): OpenCV Version 4.0.0 installed, update any documentation for this install,
should now be able to run and test training a Darknet model, identify key datasets for training

Week 9 - 10/24 (5 hrs): Tensorflow r1.12 (larger build, may have more errors so extending this build
and documentation step to span 2 weeks), choose criteria for labeling and begin labeling data for
training

Week 10 - 10/31 (7 hrs): Tensorflow r1.12, begin training data, training experiments: follow training
steps from this document. Also test the accuracy difference in unprocessed and preprocessed
datasets. Try preprocessing the data in multiple distinct ways.

● Train with unprocessed dataset
● Train with preprocessed data

Week 11 - 11/7 (10 hrs): Convert Tensorflow model to Tensorflow Lite model (challenging task, may
need to switch to a different model if this has not been completed by this date)

Week 12 - 11/8 (10 hrs): Integrate our converted models into Android app and begin testing our
models to see which ones have the highest accuracy.

● Choose models that have the highest accuracy and further tweak these e.g. which
preprocessing techniques improved accuracy, try combinations of these.

● When it comes to training neural networks and tweaking parameters, the most
important parameter is the Learning Rate. Look into ways to optimize this
parameter and continue training models

● Next most important parameter is Regularization. Look further into this.

Week 13 - 11/15 (4 hrs): Start training new models based on the prior noted tweaks

Week 14 - 11/21 (2 hrs): Test these models

Week 15 - 11/28 (3 hrs): Wrap up documentation and results, come up with plan for next semester

Week 16 - 12/1-1/13: Break

Spring Semester:

Week 17 - 1/16 (10 hrs): Begin developing frontend UI in android studio. Configure server and begin
backend development.

Week 18 - 1/23 (7 hrs): Begin incorporating detection into the frontend and classification into the
backend.

Week 19, 20, 21 - 1/30-2/13 (4 hrs): Begin testing algorithms on real world roads and making
appropriate adjustments.

SDDEC18-XX 13

https://docs.google.com/document/d/1M7VnxoVdCRekQU2fwlhRmVmHuiexyxIzQfa_ZtGs0fE/edit

Week 22 - 2/20: Finish draft of user screens.

Week 23 - 2/27 :(10 hrs): Begin creating interaction between frontend and backend.

Week 24 - 3/5 (12 hrs): Finalize interaction between frontend and backend.

Week 25, 26, 27, 28 (40 hrs) - 3/12-4/2: Test application and make appropriate adjustments.

Week 29 - 4/9 (6 hrs): Test out final draft of application.

Week 30 - 4/16 (10 hrs): Make any final adjustments.

Week 31 - 4/23 (2 hrs): Submit project and reflect on feedback.

This is our proposed

4.2 FEASIBILITY ASSESSMENT

The project will be a mobile application for Android smartphones that will automatically
detect and classify cracks and potholes in the road. The phone will be mounted on the dashboard
or windshield of the user’s vehicle, with the camera facing down towards the road. The application
will record and a video with geotags and timestamps recorded when a crack/pothole is detected.
This information will be sent to a server, where it will subsequently be processed through the
classification algorithm and returned with a list of the cracks/potholes, their location, and their
classification.

We have quite a few foreseen challenges to this project. Since the user is mounting the
device, there is a lot of different angles that the camera could be facing the road at. We must find a
way to allow that kind of variation, or give them a strict method of mounting the phone.
Additionally, since we will also we surveying highways, we need to be able to identify cracks at high
speeds. Since phones can only record at 60fps, we may have to limit the max speed of the user.

4.3 PERSONNEL EFFORT REQUIREMENTS

Refer to section 4.1 for the personnel effort requirements.

4.4 OTHER RESOURCE REQUIREMENTS

We will need YOLO, cuda, and Tensorflow lite for software requirements. We will also
need a smartphone and a dashboard mount, which will be provided by our advisor.

SDDEC18-XX 14

4.5 FINANCIAL REQUIREMENTS

Our project has no financial requirements.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

This project’s outcome consists of implementing an algorithm to be used on a mobile phone
mounted in a car. Therefore, the algorithm will run on a phone with a graphical interface with
minimal user input once the user has initiated the program. i.e the user should be able to input all
commands before starting the cracks/potholes detection. The interface should display a real-time
video feed of identified transverse cracking, longitudinal cracking, and potholes. Once identified, it
will evaluate the severity of the cracking using the LTPP distress manual and store the processed
data. Thus, by using real-time data for the testing, we will improve the chances of the algorithm to
detect issues that may occur on the user’s end.

5.2 HARDWARE AND SOFTWARE

To verify that the final product meets the quality expectations and requirements specifications, an
actual driving test will be performed to locate defects in the algorithm. During this test, we will
drive (in normal weather conditions) in certain areas and collect enough data which we will in turn
use to assess the actual outcome compare to what is expected. Nevertheless, this testing
mechanism does not guarantee that all defects will be identified. Thus, with the outcome, we will
decide whether to improve our algorithm and fix the issues (if severe) or whether to consider that
we the algorithm minimum requirements have been met.

5.3 FUNCTIONAL TESTING

To achieve functional testing, we will identify functions
that the algorithm is expected to perform. Then create
input (i.e. feeding images/videos) data based on the
function’s specifications and determine the output
based on these specifications. Finally, we will execute
test cases and compare the actual and expected outputs.

5.4 NON-FUNCTIONAL TESTING

While functional testing will test the functionality of the algorithm, non-functional testing is also
very important and should be taken into consideration right from the inception of the algorithm.

SDDEC18-XX 15

Hence, the user should be able to mount the mobile phone in the car prior to its usage and
shouldn't need to have prior knowledge about how to use the application.

5.5 PROCESS

As indicated in section 2, there are three major processes to select from: a mobile application with
all the detection features included; a mobile application that transfer all the data collected to a
server which does all processing; or a spit of detection features between the mobile app and the
server. To be more efficient, we used a combination of those methods. The following illustrates
how we tested those processes.

To test the mobile application, we looked at the images that were sent on the server by the app and
verified that each of them depicts the types of cracks/potholes we were expected. In addition, we
made sure that for each of those images, the location coordinates also match the values in our
database. A similar approach was done to test the Node.js server, except the images from the
mobile application are not processed prior to their transfer to the server. i.e, the server does all the
processing. Finally, for the SQL Database, we test the output by using a large dataset of stored
images, locations, and severity classifications.

5.6 RESULTS

So far, we have a training environment setup and configured with CUDA and cuDNN module. We
have tested multiple machine learning frameworks such as Keras and TensorFlow. By using
Darknet backend to start the training of some models for object detection, we have successfully
trained a custom model, identified a sample dataset to test the framework on, and have a good
understanding on how to label images in labelIng. In addition we have a custom configuration of
OpenCV to build with CUDA and cuDNN modules among other custom modules. Finally, we have
visualized results of the model using OpenCV 4 which drew the bounding boxes around the object
detection predictions. Hence, we are currently in the process of modeling and simulating our
algorithm. Although we expect to have a prototype by the end of this semester (per the project
specifications), the algorithm will be finalized to meet our client’s expectations by the end of next
semester.

6. Closing Material

6.1 CONCLUSION

To sum up, the goal of this project was to develop an algorithm that can analyze the images/videos
taken by a phone camera and identify the types and severity levels of cracks found. The best plan of
action to achieve this goal was to automate this analysis using feeds recorded by a smartphone
mounted on the windshield of a car; this technique coupled with GPS coordinates proved to help

SDDEC18-XX 16

engineers locate the cracking position and develop a pavement maintenance/rehabilitation plan
accordingly.

6.2 REFERENCES

[1] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road Damage Detection and
Classification Using Deep Neural Networks with Smartphone Images,” Computer-Aided Civil and
Infrastructure Engineering, vol. 33, no. 12, pp. 1127–1141, 2018.

[2]A. Alfarrarjeh, D. Trivedi, S. H. Kim, and C. Shahabi, “A Deep Learning Approach for Road
Damage Detection from Smartphone Images,” 2018 IEEE International Conference on Big Data (Big
Data), 2018.

[3] W. Wang, B. Wu, S. Yang, and Z. Wang, “Road Damage Detection and Classification with Faster
R-CNN,” 2018 IEEE International Conference on Big Data (Big Data), 2018.

[4] Mei, Qipei & Gül, Mustafa. (2019). A Conditional Wasserstein Generative Adversarial Network
for Pixel-level Crack Detection using Video Extracted Images.

[5] K. Gopalakrishnan, “Deep Learning in Data-Driven Pavement Image Analysis and Automated
Distress Detection: A Review,” Data, vol. 3, no. 3, p. 28, 2018.

[6] Web.stanford.edu. (2019). [online] Available at:
https://web.stanford.edu/class/ee368/Android/Tutorial-3.pdf [Accessed 4 Oct. 2019].

[7] Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X. and Ling, H. (2019). Feature Pyramid and
Hierarchical Boosting Network for Pavement Crack Detection. IEEE Transactions on Intelligent
Transportation Systems, pp.1-11.

6.3 APPENDICES

Coming soon…

SDDEC18-XX 17

