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Executive Summary 

Development Standards & Practices Used 
● Documentation According to Class Quality 
● Life Cycle Processes - Risk Management 
● Software Reliability Standards 
● Guide for Taxonomy for Intelligent Process Automation Product Features and 

Functionality 

Summary of Requirements 
● Create algorithm that identifies cracking, longitudinal cracking, and potholes 
● Evaluate severity level of cracking in accordance with LTPP distress manual 
● Data collection done by smartphone 
● Severity levels defined for 3 different types of pavements:  

○ Asphalt concrete surface 
○ Jointed portland cement surface 
○ Continuously reinforced concrete surfaces. 

Applicable Courses from Iowa State University Curriculum  
● CprE 388 - Embedded Systems II: Mobile Platforms 
● Com S 309 - Software Development Practices 
● Com S 311 - Algorithm Analysis & Design 
● Com S 319 - Construction of User Interfaces 
● Com S 363 - Database Management 

New Skills Acquired Not Taught in Courses 
● Machine Learning 

○ Setting up/using TensorFlow 
○ Labeling data sets 
○ Training algorithms 

● Servers 
○ Creation 
○ Management 
○ Interactions with other platforms 
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1. Introduction 

1.1 ACKNOWLEDGEMENT 
We would like to acknowledge our client, Bo Yang.  Bo has been working with us from 
many angles to progress on this project, and will likely be a large contributor to our 
success.  The basis for this project is an unfamiliar topic, but Bo has been guiding us in 
how to properly classify cracks based on the LTPP manual.  In addition to the help with 
LTPP, he has forwarded research to us that is relevant to the project.  He has also 
expressed that he will help us in the event that we need financial assistance or additional 
hardware. 
 

1.2 PROBLEM AND PROJECT STATEMENT 
1.2.1 Problem Statement 

The classification of cracks and potholes found in roads and their severity 
currently requires manual measurement of the affected area.  This 
measurement requires researchers to leave their vehicles and enter the 
roadway, which is often dangerous.  Measurements are also often time 
consuming to obtain. 

1.2.2 Proposed Solution 

The purpose of this project is to develop an Android application that removes 
the need for a researcher to leave their vehicle when classifying 
cracks/potholes based on the type and severity.  The project is driven by the 
need described above. This measurement is a vital part of determining where 
to focus research and gather additional data.  The current process is both slow 
and dangerous; researchers are often standing alongside lanes of high speed 
traffic. 

Our planned solution is a mobile device running a mobile application running 
a trained machine learning algorithm which will be mounted on the dashboard 
or windshield of a vehicle. The app will inference whether the stretch of road 
ahead of the device contains a pothole or crack.  From there, the mobile 
device will snap an image or record video and send it to a remote server along 
with the location of the image for classification.  The server will run the image 
through a classification algorithm to determine the severity of the 
pothole/crack and then store the classification, location, and other important 
data in a database for use by the users. 
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1.3 OPERATIONAL ENVIRONMENT 
The general operational environment for this project will be on a mobile device mounted 
on either the dashboard or windshield of a car using a 3rd party mounting device. 
Although the device will not withstand any extreme weather conditions, the user will not 
be capable of interacting with it while driving.  It must be capable of running 
automatically after minimal user set-up prior to driving, and operate  in a non-distracting 
manner to the driver until manually terminated.  
 

1.4 FUNCTIONAL REQUIREMENTS 

1.4.1 Android Application 

1.4.1.1 The application will use a trained model to detect longitudinal cracking, 
transverse cracking, and potholes found in roads. 

1.4.1.2 If a crack/pothole is detected the app will save a video or image of the area 
where the detection occurred to the mobile device. 

1.4.1.3 If a crack/pothole is detected, the app will save the location data of where 
the detection occurred. 

1.4.1.4 If the user is connected to the internet, the application will submit 
recorded videos/images and location data to the server for classification. 

1.4.1.5 If the user is not connected to the internet, the application will maintain a 
list of stored recordings/images and location data that have not been 
submitted to the server. 

1.4.2 API 

1.4.2.1 When the classification server is shut down the API shall return 
appropriate error codes detailing the loss of the server. 

1.4.3 Classification Server 

1.4.3.1 The server will receive images/videos and location data from the android 
application. 

1.4.3.2 Videos/images and location data received by the server will be stored in a 
database. 
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1.4.3.3 Videos/images received by the server will passed through a classification 
algorithm to determine the severity of the cracking/pothole. 

1.4.3.4 Data pertaining to the classification of severity for videos/images shall be 
stored in the database. 

1.4.4 User Interface 

1.4.4.1 The user can press a button to make the app start scanning the road for 
cracks/potholes.  After the button is pressed the app requires no further 
interaction from the user to detect cracks/potholes. 

1.4.4.2 The user can press a button to stop the scanning process. 

1.4.4.3 The app will display bounding boxes around detected cracks/potholes to 
provide a visual feedback of detections. 

1.4.4.4 Given the API is down, the user interface shall remain functional. 

 

1.5 NON-FUNCTIONAL REQUIREMENTS 
1.5.1 Android Application 

1.5.1.1 The detection shall be able to detect cracks/potholes on multiple road 
types (composite/asphalt/etc.) 

1.5.1.2 The app shall be capable of detecting cracks/potholes at speeds between 
0-x mph 

1.5.1.3 Need to do more research and testing to find a reasonable value for x 

1.5.1.4 Detections made by the app shall comply with the LTPP distress manual. 

1.5.2 API 

1.5.2.1 The API shall have documentation for each endpoint. 

1.5.3 Classification Server 

1.5.3.1 The server should be capable of running on a Linux machine with a 
CUDA-capable GPU. 

1.5.3.2 Classifications of severity shall comply with the LTPP distress manual. 
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1.5.4 User Interface 

1.5.4.1 If the classification server is not available, the user interface shall display 
that there was a loss of communication to the user. 

1.5.4.2 If an error occurred while sending or receiving images/videos from the 
server, the user interface shall display a user-friendly error message. 

1.5.4.3 The user shall be capable of viewing past detections along with their data. 

 

1.6 INTENDED USERS AND USES 
The intended users for the deliverables from this project are researchers.  Researchers in 
this area require measurements of cracks and potholes in the road, but gathering those 
measurements are both time consuming and dangerous.  By using this project, researchers 
will be able to gather images and classify cracks/potholes much quicker than they could 
manually.  Researchers will also be able to complete this task from their vehicle, which 
will be safer than roadside.  They prioritize accuracy and availability of data, so we will 
focus on those two ideas when implementing our project. 
 

1.7 ASSUMPTIONS AND LIMITATIONS 
1.7.1 Assumptions 

1.7.1.1 The mobile device will be mounted using a third party mounting device on 
either the dashboard or windshield 

1.7.1.2 The application will be started prior to the user driving, requiring no 
interference until the user has finished evaluating their target area 

1.7.1.3 The product will not be used outside of the United States 

1.7.1.4 There will be 10 or fewer concurrent users sending/receiving data from the 
server at a given time 

1.7.1.4.1 Primary focus as defined by the client is on creating a functioning 
and accurate algorithm and less on supporting multiple users 

1.7.1.5 Data obtained from the application and any processing of the data will be 
stored in a centralized database 

1.7.1.5.1 We don’t currently foresee different organizations using this 
application simultaneously 
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1.7.2 Limitations 

1.7.2.1 The application should be run on commercially available mobile devices 
without the use of additional hardware (outside of the mounting device) 

1.7.2.2 The application should be simple to use, requiring no prior knowledge of 
machine learning, LTPP crack classification, or any other prior knowledge 
to operate 

1.7.2.3 The classifications will be categorized using criteria from the LTPP 
distress manual 

 

1.8 EXPECTED END PRODUCT AND DELIVERABLES 

1.8.1 Android Application 

The Android application shall be free and available on the Google Play Store 
or through a downloadable APK.  It shall require no additional downloads or 
modifications to the Android device to be operational.  It will operate 
exclusively with the delivered server and database using an API designed for 
this project.  This application will be capable of using a trained model to 
detect cracks/potholes found in roads and displaying information pertaining to 
the detection for the user. 

1.8.2 API 

There will be an API that can be used to communicate with the server to 
create, read, update, delete, and query data stored on the database as well as 
utilize functions related to severity classification of images/videos. 

1.8.3 Database 

The database will be made available in a condition that requires no additional 
actions from the client to operate.  Instructions for how to remove data or 
manually add data to the database will be included in project documentation. 

1.8.4 Server 

The server will be available in a condition that requires little to no additional 
actions from the client to operate.  Actions such as restarting or terminating 
the server will be simple to execute.  The server will execute database queries 
and perform functions related to the classification of videos/images using the 
trained classification model.  Instructions for how to restart the server in the 
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event of an issue and a list of error code definitions will be included in project 
documentation. 

1.8.5 Trained Detection Model 

A trained model will be included in the Android application for the detection 
of cracks/potholes.  Detectable crack types will include transverse cracking, 
longitudinal cracking, and potholes as described in the LTPP manual. 

1.8.6 Trained Classification Model 

A trained model will be made available for the classification of crack/pothole 
severity.  This model will be utilized by the server to determine the severity of 
a detected crack/pothole as described in the LTPP manual. 

1.8.7 Documentation 

Documentation for the process of using each component and making general 
expansionary modifications will be made available.  This will include, but is 
not limited to, restarting each component, wiping each component of data and 
restarting, performing general maintenance, and error handling. 
Documentation for how to expand upon the types of classifiable cracks may 
also be included. 

 

2. Specifications and Analysis 

2.1 PROPOSED DESIGN 
We’ve identified three loose approaches to this project; an all-in-one mobile application, 
a mobile application that sends data to a server for complete detection/classification, and 
breaking the detection and classification up between the mobile app and the server.  Each 
approach has pros and cons.  The all-in-one application would be the simplest and least 
data-intensive option for the end user, but may function too slowly to detect 
cracks/potholes at higher speeds.  On the other hand, doing all of the detection and 
classification server side would be extremely accurate but require sending large amounts 
of video to the server, and thus be extremely data intensive.  Lastly, a blended approach 
would allow us to detect cracks/potholes at a relatively quick pace while maintaining 
accuracy in the more challenging area of classification with less data.  While we 
recognize the value in the other two approaches, we settled on a blended application.  Our 
current proposed design is as follows: 
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2.1.1 Mobile Application 

2.1.1.1 Runs a trained machine learning model for detecting potholes/cracks using 
TensorFlowLite 

2.1.1.2 Captures images or a short video when a potential crack or pothole is 
detected 

2.1.1.3 Sends the image/video and location data to the server either as detections 
are made or in a batch at user request 

2.1.2 Server 

2.1.2.1 Receives the image/video and location data from the mobile application 

2.1.2.2 Stores the original image/video and location data in a database 

2.1.2.3 Sends the image/video through a trained classification model for severity 
classification 

2.1.2.4 Receives the output from the classification algorithm and stores the result 
with the original input data in the database 

2.1.3 Database 

2.1.3.1 Stores the captured image/video, location, severity classification, and a 
unique identifier for each detected crack/pothole 

2.1.4 Web-based User Interface 

2.1.4.1 Displays collected images/video, location, and classifications 
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Figure 1: Activity Diagram 

 

 

Figure 2: Deployment Diagram 
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2.2 DESIGN ANALYSIS 

With this design approach we are able to combine the strengths of the other two options. 
We believe that it doing detection in-app will cut down on the amount of required data. 
By detecting cracks/potholes as we go we can keep only relevant data, and therefore less 
storage is required both on the device and in the database.  In addition, doing the 
classification server-side will increase the speed classification and allow us to use a more 
complex classification algorithm.  Mobile devices have limited hardware and therefore 
take longer to make inferences.  If both detection and classification were done in-app it is 
likely that it will not be capable of performing at moderate to high speeds. 
It is also worth noting, however, that this design comes with some concerns.  While we 
are hopeful that we can make timely inferences, it may not be possible to detect 
cracks/potholes at high speeds.  Limitations in mobile hardware with both the camera 
quality and processing power may inhibit the speed at which the model can make 
detections. 
Another large design choice we have made at this point was to develop the application 
for Android devices.  Our group has significantly more experience with creating Android 
applications and each member owns an Android device.  Helpful frameworks, like 
TensorFlowLite, have been created by Google and also have greater support and 
documentation for Android. 
Initially, we were apprehensive of the blended approach being attainable, but as we 
continue to research and implement prototypes it is increasingly proving to be a valid 
option.  We have found an offshoot of TensorFlow named TensorFlowLite that is 
optimized for mobile.  After working through some examples of TensorFlowLite YOLO 
detection, we feel that with some adjustments the application would be able to inference 
quickly.  Although we do not have a prototype with cracks/potholes yet, we have tested it 
using pre-trained models for common items and have found that it inferences with an 
average of around 50ms per inference on a Samsung Galaxy S7. 
 

2.3 DEVELOPMENT PROCESS 
We are following an Agile approach to this project.  Given that this project  Our sprints 
will be roughly two weeks in length and will include demos with our client as necessary. 
Tasks are organized on Trello with task designation occuring during weekly team 
meetings.  We are using GitLab for organization and will document issues as they arise. 
Merge requests will be reviewed and approved by at least two team members. 
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2.4 DESIGN PLAN 

The mobile application will be designed for Android targeting API level 27 or later to 
allow the use of the existing Neural Networks API designed by Google.  It will utilize 
TensorFlowLite to make inferences using a trained YOLO model.  The model will be 
trained to detect transverse cracks, longitudinal cracks, and potholes.  Incoming video 
data will be collected using the camera on the mobile device and collected videos/images 
will be stored on the device until the device is connected to the internet.  If internet 
connectivity is available, the device will send images/video to the server that have not 
been sent already using the Volley library. 

The server will be created with Node.js and utilize the API to store data in a MySQL 
database.  If the API or server were to shut down for any reason, the data should remain 
uncorrupted and the Android and web interfaces should display appropriate error 
messages.  Following the reception of images/video, the server will store the incoming 
data in the database.  The server will also pass the images/video through a classification 
algorithm to classify the severity of the detected.  Upon completion, data pertaining to the 
classification of the crack/pothole will be stored in the database alongside its original 
video/image and location data. 

The web interface will allow users to view and retrieve existing data from the database, 
including images, videos, location data, and classification data in an easy to read format. 

 

3. Statement of Work 

3.1 PREVIOUS WORK AND LITERATURE 
Previous work demonstrates advances in object detection algorithms have lead to 
research leveraging deep learning for road damage.  From the literature there were three 
popular methods for realizing this task; the first leverages a simple convolutional neural 
network (CNN) architecture which is used for inference to generate simple bounding 
boxes during run time.  The second leverages more complex CNN architectures which 
semantically segment the objects from the background.  Finally, the last provides an 
alternative approach to crack detection using a conditional Wasserstein Generative 
Adversarial Network (WcGAN).  For our project we are specifically trying to detect 
potholes, longitudinal cracks, and transverse cracks in concrete.  Furthermore, our task 
involves detecting the severity level of each crack, as well as using a smartphone for data 
collection.  The combination of these three requirements has yet to be realized.  
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First, from the article titled “Road Damage Detection Using Deep Neural Networks with 
Images Captured Through a Smartphone”[1], the authors created their own custom 
dataset by mounting a smartphone to the dashboard of a car that takes photos every 
second.  From this dataset they collected over 9,000 images in which they used alongside 
the SSD Mobilenet architecture to train weights and biases for object detection.   SSD is 
an object detection framework which uses a single feed-forward CNN to directly predict 
classes and anchor offsets without requiring a second stage per-proposal classification. 
The authors implement SSD using both Mobilenet and Inception V2 and conclude that 
implementing SSD using mobilenet on a smartphone is the faster option of the two. 

Second, the article titled “A Deep Learning Approach for Road Damage Detection from 
Smartphone Images”[2] uses the same dataset to evaluate road damage, however instead 
of using the SSD architecture they use YOLO.  This article YOLO, however their results 
are not tested on a mobile device.  Our research has determined that in order to get this 
working in a smartphone, a lighter weight version of YOLO is required to be used to 
derive the weights that will map the input data to our desired bounding box detection 
outputs.  

Next, in the article titled “Road Damage Detection and Classification with Faster 
R-CNN”[3],  they use pixel-level segmentation to annotate and identify cracks in the 
pavement.  While this approach is more accurate, it is more computationally expensive. 
Finally authors in the article titled “Road Damage Detection and Classification with 
Faster R-CNN” leveraged an approach using  a conditional Wasserstein generative 
adversarial network (WcGAN) is used.  Using this technique the authors were able to 
generate synthetic training data which would allow a deep learning practitioner to train an 
object detection model with the generated images to improve the detectors accuracy, 
resulting in a highly accurate object detector.  

For our project we are specifically planning to detect potholes, longitudinal cracks, and 
transverse cracks in concrete. Furthermore, our task involves detecting the severity level 
of each crack, as well as using a smartphone for data collection. The combination of these 
three requirements has yet to be realized. 

 

3.2 TECHNOLOGY CONSIDERATIONS 
Implementing a convolutional neural network (CNN) to train your own custom object 
detector is a highly complex task we will achieve through a combination of the right 
operating system, hardware, and software.  We have strategically chosen a technology 
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stack which will fulfill the requirements of the project and be easy to pick up for people 
new to machine learning with the help of our extensive documentation. 

Linux Ubuntu 18.04 is used to build our development environment where we will 
manage all of our third party libraries used for training the weights and biases of our 
object detectors.  Linux Ubuntu 18.04 has an active community of support for deep 
learning practitioners and is great for establishing a development environment for deep 
learning.  

A GeForce 930MX Graphics Processing Unit (2GB) will be used for intensive processing 
during training.  For our initial prototype we fed over 9,000 images into a custom 
developed yolov2-tiny object detection architecture that we used to train 3 classes that 
detect transverse cracks, longitudinal cracks, and potholes respectively.  With this many 
images and multiple classes, the task of training weights for inference requires the matrix 
multiplication of millions of parameters stored as n-dimensional matrices.  GPU’s allow 
thousands of threads to be run concurrently in contrast to one or two threads per CPU 
core which exponentially reduces training time.  

Our prototype implementation of our object detector was specifically trained and ran 
using  CUDA, OpenCV, and Darknet.  CUDA enables GPU acceleration that facilitates 
the processing-intensive matrix multiplication operations involved in training the weights 
and biases of our custom object detection  implementation.   OpenCV supports multiple 
performs inference which decodes the weights and biases and generates the bounding 
boxes which display the predicted object and confidence level of this prediction. The 
Darknet framework is simply the backend for creating custom YOLO object detectors. 

 

3.3 TASK DECOMPOSITION 
3.3.1. Gather Requirements 

3.3.1.1 Gather functional requirements 

3.3.1.2 Gather non-functional requirements 

3.3.2. Gather Domain Knowledge 

3.3.2.1 Gather information on problem context 

3.3.2.2 Gather information on data collection mechanism 

3.3.3. Implement a Custom Object Detector 
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3.3.3.1 Choose multiple CNN architectures to train and to test 

3.3.3.2 Setup the development environment to train and run inference 

3.3.3.3 Extensively document installation steps 

3.3.3.4 Using multiple YOLO architectures to train road damage detectors 

3.3.3.5 Run tests on custom object detectors 

3.3.4. Create a Custom Dataset for Object Detection 

3.3.4.1 Identify pre-existing datasets for road damage detection 

3.3.4.2 Integrate pre-existing datasets  

3.3.5. Scale a Custom Object Detector to a Mobile Device 

3.3.5.1 Collect data for custom dataset for road crack detection 

3.3.5.2 Create a custom dataset  

3.3.5.3 Install Tensorflow 

3.3.5.4 Extensively document tensorflow installation instructions 

3.3.6. Test the Object Detection System’s Ability to Generalize 

3.3.6.1 Collect data for custom dataset for road crack detection 

3.3.6.2 Create a custom dataset  

3.3.6.3 Install Tensorflow 

3.3.6.4 Extensively document tensorflow installation instructions 

3.3.5 Implement Server Side Object Detection 

3.3.5.1 Program logic to capture an image on Android Device 

3.3.5.2 Send the image to the server 

3.3.5.2 Setup OpenCV on the server  

3.3.5.3 Apply the severity level recognition server-side. 

3.3.6. Implement UX / UI Design 
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3.3.6.1 Design user friendly AI for Android application. 

3.3.6.2 Parse GPS coordinates from image metadata 

3.3.6.3 Create web based UI for severity level recognition 

3.3.7. System Level Testing 

3.3.7.1 Test and measure the speed and accuracy of object detection 

3.3.7.2 Test the integration of Android, the server, and web-based UI 

 

3.4 POSSIBLE RISKS AND RISK MANAGEMENT 
Risk Occurrence Scale 

1. Improbable: unlikely to happen - frequency: 0 
2. Remote: unlikely but possible - frequency: 0.01  
3. Occasional: could happen sometimes - frequency: 0.05 - 0.1 
4. Probable: is expected to happen - frequency: 0.1-0.3 
5. Frequent: will occur several times in the year: 1 

 
Risk Impact Scale 

1. Negligible:  
2. Minor: late 1 week with no penalty 
3. Serious: late less than 2 weeks with 10% penalty 
4. Critical: late less than 3 weeks with 20% penalty 
5. Catastrophic: late more than 4 weeks with 30% penalty 
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Risk Exposure Matrix 
 

 
 

  
 
 
 
 
 
 
 
 

 
 
 

Table 1. Risk Exposure matrix 
 

Risk Evaluation 
 

Risk Occurrence Impact  Exposure 

Lack of resources could affect the speed of project 
progression 

0.05 Serious High 

Development environment could be too challenging 
to setup 

0.01 Critical High 

Lack of domain expertise could lead to solutions 
that are initially suboptimal  

0.05 Critical High 

Currently lack the resources to achieve server side 
severity level detection 

0.1 Catastrophic Very 
High 

 
Table 2. Risk Evaluation 
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Risk Breakdown 

Title: Lack of resources could affect the speed of project progression 
Response: Risk Reduction  
Justification: Because of the amount of data that needs to be processed to train a custom 
object detection model, training without a GPU could take weeks.  Additionally we need 
to obtain a cell phone mount for collecting data from a smartphone mounted in a car. 
Risk Reduction Action: Begin with development in the first semester and identify 
project resources. Checkout laptops from the SSG that have CUDA capable GPUs. 
 

Title: Development environment could be too challenging to setup 
Response: Mitigate 
Justification: Building deep learning libraries, frameworks, and backends requires a 
skillset that not all team members have fully developed. 
Mitigation Action: Extensively document installation steps and share information about 
issues in the GitLab issue tracker.  
 

Title: Lack of domain expertise could lead to suboptimal solution 
Response: Mitigate 
Justification: Deep learning is a large and complex area, and our plan to implement 
object detection for post processing server-side is very ambitious.  
Mitigation Action: Do an extensive literature review and work in a way that is agile. 
Check in and report progress every meeting to make sure that we are operating in 
accordance to the timeline, and have a backup plan to do all processing client-side to 
fulfill the requirements.  

 

Title: IOT component of application could fail 
Response: Mitigate 
Justification: Only one team member is currently working on the IOT part of our 
application. Additionally in order to perform the inference and realize severity level 
detection OpenCV + cudnn is needed.  This means that our server must be connected to a 
GPU in order to achieve a working application. 
Mitigation Action: Resume development early on this task next semester.  Request 
additional resources from advisor to achieve severity level detection.  Assign additional 
support to this team member and create a detailed accountability plan for achieving 
server-side processing. 
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3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 
Milestone 1: Preliminary Phase is Complete 

● Functional requirements gathered. 
● Nonfunctional requirements gathered. 
● Cuda 9.0 + cudnn v7.3.0 and Darknet installed 
● OpenCV Version 4.0.0 installed. 
● Tensorflow r1.12 installed. 
● Installation steps documented for all 3rd party software. 

Milestone 2: System Design is Complete 

● All parts designed for networking. 
● All parts for user interface are designed. 
● Create database diagram. 
● Create high level systems level diagram. 

Milestone 3: System is Constructed 

● Object detection integrated into Android smartphone app that detects initial cracks 
and potholes. 

● Server-side object detection is performed that detects the severity level of the 
crack. 

● Web UI allows clients to view the results of server-side object detection. 
● All parts of the system are integrated. 

Milestone 4: System Testing is Complete 

● Data collection has been tested using smartphone mounted in car. 
● Testing has been completed to verify an image can be sent to the server. 
● Testing has been completed to verify images can be processed on the server. 
● Testing has been completed to verify the processed image can be viewed on the 

Web UI. 

 

3.6 PROJECT TRACKING PROCEDURES 
Our group is using a Trello board to track work that is in progress, on the backlog, and 
completed.  In addition to the trello board we are using GitLab issues.  We provide our 
team with a standard template to fill out when reporting issues to the repository that 
enables easy communication and collaboration in resolving these issues. 
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Figure 3. Trello Board 
 

 

 

 

 

 

 

 

 
 
 

Figure 4. GitLab Issue Tracker 
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3.7 EXPECTED RESULTS AND VALIDATION 
The desired outcome of our work is to create a 2 valid training models.  Our first model 
will be intended for use directly on smartphones, and our second model will be a more 
heavyweight model which will perform more rigorous crack detection, including multiple 
levels of severity.  Our model should be generalizable, meaning that the weights that we 
generate to perform our crack detection task should work during different times of the 
day and on pavement and cracks in different cities.  Additionally our results from 
validation testing will help us determine if we have reached our goal. 

 

4. Project Timeline, Estimated Resources, and Challenges 

4.1 PROJECT TIMELINE 

 

Figure 5. Gather Requirements and Gather Domain Knowledge Timeline. 

SDMAY20-18     23 
 



 

 

Figure 6. Implement a Custom Object Detector Timeline. 
 

 

Figure 7. Create a Custom Dataset for Object Detection Timeline. 
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Figure 8. Scale a Custom Object Detector to a Mobile Device Timeline. 
 

 

Figure 9. Test the Object Detection System’s Ability to Generalize Timeline. 
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Figure 10. Implement Server Side Object Detection Timeline 
 

 

Figure 11. Implement UX / UI Design Timeline. 
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Figure 12. System Level Testing Timeline. 
 

 

 

4.2 FEASIBILITY ASSESSMENT 

The project will be a mobile application for Android smartphones that will automatically 
detect and classify cracks and potholes in the road. The phone will be mounted on the 
dashboard or windshield of the user’s vehicle, with the camera facing down towards the 
road. The application will record and a video with geotags and timestamps recorded when 
a crack/pothole is detected. This information will be sent to a server, where it will 
subsequently be processed through the classification algorithm and returned with a list of 
the cracks/potholes, their location, and their classification. 

We have quite a few foreseen challenges to this project. Since the user is mounting the 
device, there is a lot of different angles that the camera could be facing the road at. We 
must find a way to allow that kind of variation, or give them a strict method of mounting 
the phone. Additionally, since we will also we surveying highways, we need to be able to 
identify cracks at high speeds. Since phones can only record at 60fps, we may have to 
limit the max speed of the user.  

 

4.3 PERSONNEL EFFORT REQUIREMENTS 
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Fall Timeline 

 

Week Task Personnel Effort 
Requirements 

Week 7 - 10/10  Cuda 9.0 +cudnn v7.3.0 
and Darknet installed, 
update any documentation 
that needs to be created or 
updated regarding this 
process.  

5-6 hrs 

Week 8 - 10/17 OpenCV Version 4.0.0 
installed, update any 
documentation for this 
install, should now be able 
to run and test training a 
Darknet model, identify 
key datasets for training 

3 hrs 

Week 9 - 10/24 Tensorflow r1.12 (larger 
build, may have more 
errors so extending this 
build and documentation 
step to span 2 weeks), 
choose criteria for labeling 
and begin labeling data for 
training 

5 hrs 

Week 10 - 10/31 Tensorflow r1.12, begin 
training data, training 
experiments: follow 
training steps from this 
document.  Also test the 
accuracy difference in 
unprocessed and 
preprocessed datasets.  Try 

7 hrs 
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preprocessing the data in 
multiple distinct ways.  

Week 11 - 11/7  Convert Tensorflow model 
to Tensorflow Lite model 
(challenging task, may 
need to switch to a 
different model if this has 
not been completed by this 
date) 

10 hrs 

Week 12 - 11/8  Integrate our converted 
models into Android app 
and begin testing our 
models to see which ones 
have the highest accuracy.  

10 hrs 

Week 13 - 11/15 Start training new models 
based on the prior noted 
tweaks 

4 hrs 

Week 14 - 11/21  Test these models 2 hrs 

Week 15 -  11/28 Wrap up documentation 
and results, come up with 
plan for next semester 

3 hrs 

Week 16 - 12/1-1/13 Break None 

Table 3. Fall Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is to 
be done in the week leading up to each Thursday. The personal effort requirements are also listed alongside 

each week’s work. 
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Spring Timeline 

Week 17 - 1/16 Begin developing frontend 
UI in android studio. 
Configure server and begin 
backend development. 

10 hrs 

Week 18 - 1/23 Begin incorporating 
detection into the frontend 
and classification into the 
backend. 

7 hrs 

Week 19, 20, 21 - 
1/30-2/13 

Begin testing algorithms on 
real world roads and 
making appropriate 
adjustments. 

4 hrs 

Week 22 - 2/20 Finish draft of user screens.  12 hrs 

Week 23 - 2/27  Begin creating interaction 
between frontend and 
backend. 

10 hrs 

Week 24 - 3/5 Finalize interaction 
between frontend and 
backend.  

12 hrs  

Week 25, 26, 27, 28 

3/12-4/2 

Test application and make 
appropriate adjustments. 

40 hrs 

Week 29 - 4/9  Test out final draft of 
application. 

6 hrs 

Week 30 - 4/16  Make any final 
adjustments. 

10 hrs 
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Week 31 - 4/23 Submit project and reflect 
on feedback. 

2 hrs 

Table 4. Spring Timeline. Each date is a Thursday, which is when we meet with our advisor. The work is 
to be done in the week leading up to each Thursday. The personal effort requirements are also listed 

alongside each week’s work. 
 

4.4 OTHER RESOURCE REQUIREMENTS 
We will need YOLO, cuda, and Tensorflow lite for software requirements. We will also 
need a smartphone, a computer to host a server on, and a dashboard mount, which will be 
provided by our advisor. 

 

4.5 FINANCIAL REQUIREMENTS 
We will require a laptop to use as our own project server.  This way the project can be 
accessed by our client and advisor after we graduate. 

 

 

 

5. Testing and Implementation 

5.1 INTERFACE SPECIFICATIONS 
This project’s outcome consists of implementing an algorithm to be used on a mobile 
phone mounted in a car. Therefore, the algorithm will run on a phone with a graphical 
interface with minimal user input once the user has initiated the program. i.e the user 
should be able to input all commands before starting the cracks/potholes detection. The 
interface should display a real-time video feed of identified transverse cracking, 
longitudinal cracking, and potholes. Once identified, it will evaluate the severity of the 
cracking using the LTPP distress manual and store the processed data. Thus, by using 
real-time data for the testing, we will improve the chances of the algorithm to detect 
issues that may occur on the user’s end. 
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5.2 HARDWARE AND SOFTWARE 
To verify that the final product meets the quality expectations and requirements 
specifications, an actual driving test will be performed to locate defects in the algorithm. 
During this test, we will drive (in normal weather conditions) in certain areas and collect 
enough data which we will in turn use to assess the actual outcome compare to what is 
expected. Nevertheless, this  testing mechanism does not guarantee that all defects will be 
identified. Thus, with the outcome, we will decide whether to improve our algorithm and 
fix the issues (if severe) or whether to consider that we the algorithm minimum 
requirements have been met. 

 

5.3 FUNCTIONAL TESTING 

To achieve functional testing, we will identify functions that the algorithm is expected to 
perform. Then create input ( i.e. feeding images/videos) data based on the function’s 
specifications and determine the output based on these specifications. Finally, we will 
execute test cases and compare the actual and expected outputs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 13. Ground truth label before training                                  Figure 14. Bounding box generated 
           yolo v2 weights                                                           from inference. 
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5.4 NON-FUNCTIONAL TESTING 

While functional testing will test the functionality of the algorithm, non-functional testing 
is also very important and should be taken into consideration right from the inception of 
the algorithm. Hence, the user should be able to mount the mobile phone in the car prior 
to its usage and shouldn't need to have prior knowledge about how to use the application.  

 
5.5 PROCESS 

As indicated in section 2, there are three major processes to select from: a mobile 
application with all the detection features included;  a mobile application that transfer all 
the data collected to a server which does all processing; or a spit of detection features 
between the mobile app and the server. To be more efficient, we used a combination of 
those methods. The following illustrates how we tested those processes.  

To test the mobile application, we looked at the images that were sent on the server by 
the app and verified that each of them depicts the types of cracks/potholes we were 
expected. In addition, we made sure that for each of those images, the location 
coordinates also match the values in our database. A similar approach was done to test 
the Node.js server, except the images from the mobile application are not processed prior 
to their transfer to the server. i.e, the server does all the processing. Finally, for the SQL 
Database, we test the output by using a large dataset of stored images, locations, and 
severity classifications.  

 

5.6 RESULTS 
So far, we have a training environment setup and configured with CUDA and cuDNN 
module. We have tested multiple machine learning frameworks such as Keras and 
TensorFlow. By using Darknet backend to start the training of some models for object 
detection, we have successfully trained a custom model, identified a sample dataset to 
test the framework on, and have a good understanding on how to label images in 
labelIng.  In addition we have a custom configuration of OpenCV to build with CUDA 
and cuDNN modules among other custom modules.  Finally, we have visualized results 
of the model using OpenCV 4 which drew the bounding boxes around the object 
detection predictions. Hence, we are currently in the process of modeling and simulating 
our algorithm. Although we expect to have a prototype by the end of this semester (per 
the project specifications), the algorithm will be finalized to meet our client’s 
expectations by the end of next semester. 
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Figure 15. Algorithm performs transverse                                  Figure 16.  Object detection system detects  
           and longitudinal crack detection              potholes.

 

 

6. Closing Material 

6.1 CONCLUSION 

To sum up, the goal of this project was to develop an algorithm that can analyze the 
images/videos taken by a phone camera and identify the types and severity levels of 
cracks found. The best plan of action to achieve this goal was to automate this analysis 
using feeds recorded by a smartphone mounted on the windshield of a car; this technique 
coupled with GPS coordinates proved to help engineers locate the cracking position and 
develop a pavement maintenance/rehabilitation plan accordingly. 
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